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ABSTRACT

Blood flow simulation is a very challenging topic in Applied Mathematics. It

involves state of the art techniques of image segmentation, computational fluid dy-

namics as well as fluid/structure interaction. The potential application for vascular

diseases would be a computer-assisted diagnostic: blood flow characteristics such as

blood velocity, pressure or artery wall shear stress are very important to know but

difficult to measure in vivo.

Here, we focus on the methods for fluid/flexible-structure interaction and more

specifically on the Immersed Boundary Method (IBM) of C.S. Peskin [89]. The IBM

combines Eulerian and Lagrangian descriptions of flow and moving elastic boundaries

using the Dirac delta function as an interpolation tool. Incompressible Navier-Stokes

(NS) and elasticity theory can be unified by the same set of equations to get a com-

bined model of the interaction. This method is very easy to implement and versatile,

so that it has numerous applications in bio-engineering or in more general computa-

tional fluid dynamics. For blood flow simulation, the IBM can be used to compute

the motion of large blood cells, on a small scale, and the interaction between the

artery wall and the pulsating flow, on a large scale.

We present a numerical study of the accuracy, the stability and the efficiency of the

IBM based on the implementation of several mathematical tools. These implementa-

tions are being made on test cases that are relevant for the IBM applications, keeping

in mind that we do not want to increase its computational cost and its simplicity for

three-dimensional coding.

Finally, we introduce an integrated approach to quickly compute an incompressible

NS flow in a section of a large blood vessel using medical imaging data, in order to

provide a first order approximation of the shear stress and the pressure on the artery

wall.

vi
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Introduction

0.1 Toward blood flow simulations

An increasing percentage of the population is concerned with vascular diseases, due

to general aging and other risk factors. The basis for the patient diagnostic is medical

imaging, whose quality is constantly improving: angiography, ultrasound or magnetic

resonance are some of the common imaging techniques. These images are crucial for

the surgeon. Since this type of surgery is a heavy process, a current effort is being

made to model blood flows inside realistic geometries, taken from medical images of

blood vessels. The aim would be to have a computer-assisted diagnostic: blood flow

characteristics such as blood velocity, pressure or artery wall shear stress are very

important to know but hard to measure in vivo. Numerical blood flow simulations

would be significant too for follow-up after an intervention, since the geometry and

the characteristics of the artery have then been changed. Finally, the surgeon may

introduce synthetic structures in an artery, in the case of aneurysm for example.

Accurate simulations would improve the design of such stent structures.

0.2 The Challenges

Blood flood computations have been made possible by the fast increase of computa-

tional resources. However, they are a highly complex phenomena that can only be

modeled by strong idealization and simplification. Even the simplified models give

rise to many challenging issues. Here is a brief description of some of these challenges.

� The artery walls are elastic and react to the pulsating flow. This implies the

implementation of fluid/structure interaction methods.

� The problem size of this type of biological simulation, is large because it involves

1



3D fluid flows. This is why fast solvers using efficient domain decomposition

methods and parallel computers need to be associated with the simulations.

� The artery walls are made of heterogeneous isotropic layers, which follow com-

plex elasticity laws. It is challenging to simulate the behavior of these different

layers of fibers. The stiffness of the vessels is strongly related to blood tension

and arteriosclerosis, which is the common hardening of the artery walls.

� To have realistic models, accurate methods for 3D reconstruction of the com-

putational domain from medical images need to be implemented. These images

contain noise and artifacts that have to be eliminated, in order to get a realistic

topology of the blood circuit.

� Blood cannot be described with the classical theories because it is a Non-

Newtonian fluid. This means that its viscosity changes with respect to the

applied shear stress. However, under certain conditions, the assumption of a

Newtonian fluid can be made, such as for low/moderate Reynolds numbers and

large vessels.

� Blood is a suspension flow. Its primary purpose is transporting cells: the pro-

portion of blood volume that is occupied by red blood cells is normally between

40 and 50 percent. This implies the implementation of a multi-scale model,

taking into account these numerous small immersed bodies.

� Finally, there is a complex chemical cell interaction between the artery walls

and the blood. The artery cells constantly communicate within the wall and

their environment. A blood clot can actually happen inside the wall, potentially

leading to a large stenosis, which is an abnormal narrowing of a blood vessel.

These artery cells also play an important role regarding the inflammation of the

tissue that often occurs in arteriosclerosis.
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We can see that even if the model was very accurate, the implementation would be

difficult, due to double multi-scale phenomena (see Table 1).

Scale large small

Space blood/artery interaction blood cell motion, chemical interaction

Time chemical interaction blood/artery interaction, blood cell motion

Table 1: Multiscale nature of blood flow.

Current models only deal with a few of these issues: it is very difficult to deal with

both the dynamics and the chemistry of the fluid. In this dissertation, we focus on

the dynamical aspect.

� Methods for fluid/flexible-body interaction and more specifically the Immersed

Boundary Method (IBM); these methods are applied to the blood flows on two

levels: the blood/artery wall interaction and the blood/large cell interaction.

� Fast efficient solvers for the fluid flow computations.

� Geometric extraction of a large blood vessel section, using medical imaging data

and the rapid computation of the shear stress and the pressure on the artery

wall.

We do not model the chemical interaction and consider blood to be a Newtonian

homogeneous fluid, which is relevant to simulation of blood flows with moderate

Reynolds number in large vessels.

0.3 On The numerics

The main approaches to simulate fluid flows in complex geometries use either a

boundary-fitted mesh or an artificial boundary method such as the IBM, in which
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the effect of the boundary is virtually applied to the fluid by a constraint on the

equations, or a different local stencil. In the fluid/structure interaction cases, some

boundaries are moving, thus the boundary-fitted methods imply a lengthy re-meshing

at each time step. This is why the artificial boundary methods are convenient: we

can keep the same mesh in all computations. Since the number of grid points is re-

quired to be large for fluid computations, and the computational domain is fixed, we

choose a mesh that is as regular and uniform as possible, associated with the simple

finite difference method. The high level of regularity and symmetry in the mesh, the

analogy of the discretization method with the derivative operators and the versatil-

ity of the artificial boundary methods, allow the simulations, including the domain

decomposition methods, to be implemented quickly.

Since these numerical methods are meant to be used by bio-engineers, we developed

our codes in the MATLAB language for its great interactivity potential, visualization

and wide choice of ready-to-use numerical functions. However, we have a 3D IBM

code based on a NS solver written in FORTRAN [38].

0.4 Outline

The first three chapters are a numerical introduction to the IBM. In Chapter 1, we

briefly present the different methods for fluid/flexible-body interaction, starting with

the concept of mixing Eulerian and Lagrangian points of view and then artificial

boundary methods. Chapter 2 is an introduction to the discretization of the NS

equations: first-order projection scheme for the temporal discretization and finite

differences for the spacial one. Then, we show some basic test cases, some of which

involve fixed immersed bodies. In Chapter 3, we describe the discretization of the

IBM, as well as some recent developments in the method.
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In Chapter 4, we present a study of the accuracy of the IBM. First, we describe the

different discrete Dirac delta functions, which are the key interpolating tool of the

method, then we compare them in the framework of elliptic equations with singular

source terms, and the IBM. This implies studying the volume conservation property of

the IBM as well. Another way to improve the accuracy is the use of extrapolation: we

implemented the multigrid/τ -extrapolation technique, which is based on Richardson

extrapolation. Finally, we present a method based on a non-centered stencil for the

divergence operator to solve Poisson’s equation with the divergence of a singularity

in the right-end side. This is directly related to the pressure equation of the IBM.

In Chapter 5, we study the stability of the IBM. First, we implemented a fully implicit

IBM and show the results regarding stability. Then, we associated another interest-

ing tool with the IBM: Fourier expansions, which save computations and allow the

improvement of the stability or the volume conservation property of the method.

Chapter 6 describes the parallel implementation of the Poisson equation solver, using

the Aitken acceleration of Schwarz algorithm and the MATLABMPI toolbox. We

show the results regarding speedup, efficiency, and associate it with the IBM.

Finally, in Chapter 7, we introduce a versatile incompressible NS solver for blood

flow. It includes the geometry extraction of a large blood vessel section, using medical

imaging data, rapid computation of the shear stress, and the pressure applied by the

flow on the artery wall.
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Chapter 1

On Immersed Boundary

Simulations

In Fluid Dynamics computations, we usually assume the fluid material to be isotropic

and to satisfy the continuum assumption, which states that the properties of the fluid

such as velocity, stress, temperature or density are continuous inside the computa-

tional domain. But a lot of macroscopic real life cases show strong discontinuities of

the fluid, due to different fluid properties or an immersed elastic boundary separating

the fluid. These discontinuities are source of physical interactions at the interface,

which are difficult to simulate.

We concentrate on sharp interfaces and fluid/elastic-body interaction. In this last

case, a thin elastic membrane is immersed in a fluid, exerting an elastic force.

The challenges regarding these simulations are:

� Tracking and describing the geometry of the moving interface.

� Modeling the physical interaction at the interface.

� Coupling the fluid and elastic body equations.
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Many engineering issues involve fluid/structure interactions, while many biological

cases involve thin immersed elastic boundaries. This is one of the most challenging

problems in computational science today, because it involves complex domain geome-

tries, high Reynolds numbers and moving interfaces simultaneously. A lot of research

is done on the algorithms for better accuracy, stability, and smaller CPU cost, while

more and more scientists apply these new methods to real-life problems.

Let us present a short overview of the methods used for fluid/structure interactions

and introduce the immersed boundary simulation techniques.

1.1 The Basic approaches

The first aspect that we need to distinguish between the approaches, is whether or

not the mesh is fitting the immersed boundary. This leads to two different families

of methods: the boundary-fitted and the non-boundary-fitted methods. In the first

family, the fluid computations are made on a boundary-fitted mesh, usually with

finite-elements. This implies a complex and lengthy re-meshing at each time step, if

the boundary is moving. This is why we focus on the simpler non-boundary-fitted

family of methods, which mix Lagrangian and Eulerian computations in an efficient

way. First, let us introduce these two different point of view.

1.1.1 The Lagrangian method

Lagrangian methods are traditionally used for solid deformations: the computational

mesh follows the same physical particles during motion. Such a method allows us

to track the interfaces between different media with great accuracy. The drawback

is that each time increment implies a mesh deformation, since each node is moving.

Thus, this method is limited to relatively small distortions, in order to keep the

structure of the mesh.
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1.1.2 The Eulerian method

For Eulerian methods, the computational mesh does not move and the motion of the

fluid is described with respect to the fixed grid. Large distortions in the materials can

be followed easily by introducing some Lagrangian markers along the moving bodies,

but at the cost of accuracy, since the same fixed mesh points describe the fluid and

the immersed bodies.

The aim of most fluid/structure interaction methods is to combine the two basic

approaches, Lagrangian and Eulerian, in a way that fits the physical case best, keep-

ing the advantages of both. For example, let us present the earlier stage of all the

immersed boundary simulations: the Maker-And-Cell (MAC) method.

1.1.3 A Mixed Eulerian-Lagrangian method

One predecessor to mixed Eulerian-Lagrangian methods was the MAC method. This

was developed by F.H. Harlow and E. Welch [49] as a variation of the Particle-In-Cell

(PIC) [48] method that deals with the dynamics of compressible fluids. The MAC

method was the first to treat free surface incompressible flows. While it was made

to model liquid/gas and not fluid/structure interactions, it introduced the idea of a

combination between Eulerian and Lagrangian methods: the flow motion is described

by some Eulerian fields, while some Lagrangian markers are distributed in the liquid

phase in order to distinguish the liquid from the gas. The numerical scheme to solve

the NS equations associated with the MAC method is very well described in [91].

However, C.W. Hirt [52] showed that the MAC method is unstable with centered

momentum advection unless the viscosity is sufficiently large. Its main feature today

is the staggered mesh for the Eulerian fields. This mesh allows the use of a more

compact finite difference stencil and, when associated with a projection scheme, a
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better coupling between the pressure and velocity fields.

Now that we have an idea of how to combine both classical approaches, we come back

to the first issue of interface problems, which is tracking and describing the moving

interface.

1.2 The Representation of the moving boundary

There are two general ways to describe a moving boundary: explicit or implicit.

1.2.1 The Markers methods

These are explicit ways of describing the interface that can be divided into two cate-

gories. We present now examples of both describing ways.

� First technique: we distribute a uniform set of marker points along the interface.

� Second technique: we distribute a few marker points and then fit a curve onto

them.

An implicit function can also be used, such as the Level-Set one.

1.2.2 The Level-Set Method

The level-set method is one of the most well-known front-tracking techniques. A

level-set function φ is used to track the interface, which has to be a closed curve. Let

us call X the time-dependent mapping from the curvilinear coordinates s along Γ, the

interface, to the Cartesian grid. We define φ : Ω −→ R such that: φ(X(s, t), t) = 0,

φ < 0 inside Γ and φ > 0 outside. The chain rule yields:

φt +∇φ.Xt = 0. (1.1)
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The speed function F is defined in the outward normal direction such as:

F = Xt.η, (1.2)

with η being the outward normal vector: η = ∇φ
|∇φ| .

We can then rewrite (1.1) as:

φt + F |∇φ| = 0, (1.3)

which is a Hamilton-Jacobi equation for the level-set function. This equation is solved

using a standard explicit scheme. The field φ is initialized at t = 0 with the distance

between the Cartesian grid points and Γ:

φt=0 = +d(x,Γ) if x is inside Γ, or φt=0 = −d(x,Γ).

The method automatically captures topological breakage and merger. The drawback

is that it is computationally expensive: not only the zero level but all the level-sets

have to be evaluated, which represents computations over the whole domain.

Now we give a non-exhaustive list of the immersed boundary simulation techniques.

Other general reviews of these methods can be found in [78] and [53].

1.3 The Moving mesh methods

The moving grid methods, also called r-methods, generate unstructured meshes ac-

cording to the solution of a time-dependent partial differential equation. The mesh

points stay concentrated in regions of sharp variation in the solution, such as the mov-

ing interface, and their number stay fixed. Basically, two PDE systems are coupled:

one for the physical problem and one for the mesh movement itself.
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Let us describe briefly the velocity-based moving mesh methods in which the un-

knowns are the mesh nodes’ velocities rather than the mesh nodes’ coordinates (loca-

tion based methods). The most commonly used ones are the Arbitrary Lagrangian-

Eulerian (ALE) methods. In this kind of boundary-fitted methods [15, 50], the nodes

of the computational mesh can be moved in a Lagrangian way but without following

exact physical particle motion. These particles are still globally moving with respect

to the mesh. In other words, the mesh velocity is introduced as an additional degree

of freedom. It allows us to follow slow deformations of the interface in an accurate way

but requires frequent re-meshing. A high-level of accuracy can be reached through

this process, even for high Reynolds numbers.

Another interesting velocity-based moving mesh technique is the Geometric Conser-

vation Law method (GCL) [117], whose name is based on the law that implies a cell

should not accumulate mass or momentum purely due to its motion.

The main drawbacks of moving mesh methods are that they are difficult to implement

and that re-meshing requires a lot of CPU, even if the mesh does not fit exactly the

moving boundary. This also implies that they can only model small deformations of

the immersed bodies. Recent developments can be found in [109].

1.4 The Artificial boundary methods

One way to avoid re-meshing, is to solve the governing fluid equations on a Cartesian

grid and to artificially introduce the effect of the interaction into the fluid variables

at the grid points neighboring the moving interface. The mesh is now independent

from the interface and the method allows us to follow very large deformations of the

interface, described by some Lagrangian coordinates. The challenge is transferring

the fields from the Lagrangian to the Eulerian mesh and vice-versa. A broad variety of
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methods described in this section bring answers to this issue. Though some methods

are difficult to classify, we can basically divide them into four categories:

1. Cut-cell/direct methods: the mesh cells are cut and a special stencil is used

near the interface.

2. Immersed boundary techniques: the sharp effect of the interaction is regularized

and directly introduced into the fluid equations as a force term; this category

includes the IBM.

3. Hybrid Cartesian/Immersed boundary formulations: the force term is derived

directly from the discrete momentum equation in order to prescribe the desired

boundary conditions.

4. The Finite-Element immersed boundary methods: these are Immersed Bound-

ary techniques with a variational approach.

Let us describe each of these categories. The list of methods in each category is non-

exhaustive, the volume of recent publications on fluid/structure interaction being so

large.

1.4.1 The Cut-cell/direct methods

The moving boundary is seen as a sharp interface, intersecting some Cartesian mesh

cells. These cells are divided into sub-cells, corresponding approximately to the repar-

tition of the different or separated fluids, creating some irregularities in the mesh.

Then, an appropriate interpolation technique allows computation of the flow vari-

ables around the interface on the irregular mesh, using the boundary conditions.

These methods are very well described in the text [118].
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There are many ways to cut the cells, due to the large possibility of intersections be-

tween the interface and the fixed mesh. The first cell-cut idea, the Coupled Eulerian-

Lagrangian method (CEL), was introduced by W.F. Noh [120]. Let us describe the

Volume Of Fluid method (VOF), described by W.F. Noh and P.R. Woodward [82],

J.D. Ramshaw and J. A. Trapp [96], C.W. Hirt [51] for liquid/gas interactions. The

idea is to have a fraction field Fi(t), function of time, that gives the percentage of

liquid for the cell i:

Fi(t) =




0, if cell i is full of gas at time t

1, if cell i is full of liquid at time t

α, if cell i has a proportion α of liquid at time t.

(1.4)

The two ways to cut the cells in the original VOF methods are:

� the Simple Line Interface Construction (SLIC) method (Figure 1.2),

� the Piecewise Linear Interface Construction (PLIC) method (Figure 1.3).

The SLIC consists of dividing the cell with horizontal or vertical lines only, while the

PLIC uses straight lines with variable slopes. The VOF method can also be coupled

with the Level-Set tracking method, which provides the physical geometry of the

interface [106].

Figure 1.1: Interface. Figure 1.2: SLIC method. Figure 1.3: PLIC method.

A recent development of the cut-cell technique can be found in [47] with the ELAFINT

method: Eulerian-Lagrangian Algorithm For Interface Tracking.
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Generally, the cut-cell techniques for complex geometries of moving boundaries are

complicated to implement, due to special treatment that must be made to the cut

cells, depending on the geometry of the sub-cells. The other drawback is that the

irregularity of the cell size and geometry introduces conservation and stability issues

for the solver. Implementations of fluid flows with immersed boundaries and cut-

cell methods can be found in [107, 46, 45], with some cell-merging techniques that

decrease the eventual irregularity of the mesh. Second-order accuracy is measured for

flows in complex geometries, even in the neighborhood of the boundaries. However,

besides the fact that the implementation is difficult, the efficiency is reduced by the

need of an iteration scheme to solve the fluid equations with the modified stencil

corresponding to the geometrically modified cells, neighboring the interface.

Another approach of directly imposing the boundary conditions of the moving bound-

ary is the finite difference ghost-cell technique. The ghost fluid method was initially

developed as an alternative to the Level-Set method for interface fluids, which suffers

from spurious oscillations. Ghost cells are cells in a medium that have at least one

neighbor across the interface. Then, an interpolation method is introduced using the

cells across the media and the value at the boundary. For example, in 2D, bi-linear

interpolation can be used, and in 3D, tri-linear interpolation. This linear ghost-cell

interpolation works well with low/moderate Reynolds numbers. However, different

interpolation techniques have to be implemented with high Reynolds number flows,

involving the normal derivatives to the boundary. Using this interpolating scheme,

the interface jump conditions can be expressed implicitly, and standard finite differ-

ence solvers can be used [94, 31, 95]. This method leads to non-smeared interfaces,

applicable to detonation simulation for example.
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1.4.2 The Immersed boundary techniques

The first attempt at using such a technique is called Arbitrary Boundary MAC (AB-

MAC). This is an extension of the MAC method by J.A. Viecelli [114, 115], dealing

with flows and moving boundaries. Some special boundary conditions are introduced

to the pressure field at the boundaries, which are free to move or follow a special

prescribed motion, so that the flow cannot cross them. This requires a long itera-

tion process at each time step for the boundary conditions to be satisfied under the

divergence-free constraint.

C.S. Peskin then developed a more practical method: the Immersed Boundary Method

(IBM) [88], to compute 2D blow flows in the heart. A good review of the method

can be found in [89]. It uses Dirac delta functions as interpolating tools and markers.

The regularized discrete Dirac delta functions allow us to get a force term in the

Eulerian mesh from the Lagrangian local force density along the moving boundary,

in an interpolation process. This force term is then introduced into the governing

equations of the flow, on the fixed grid. Then, after the fluid velocity is computed,

the position of the interface is updated using the no-slip boundary condition between

the fluid and the interface. Incompressible NS and Elasticity theory can be unified by

the same set of equations to get a combined model of the interaction. M. Francois and

W. Shyy also incorporated the energy equation into the model [35, 36], to simulate

two-phase flows with surface tension at the interface and heat tansfer. However,

the theoretical second-order accuracy of the method is actually reduced around the

interface because of the use of regularized delta functions. We will detail the method

in Chapter 2.

D. Goldstein [19, 20] introduced an extension of the IBM based on feedback forcing,

called the Virtual Boundary Method (VBM). It is made for fixed immersed body

simulations, within the spectral methods framework. The main drawback is the
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constraint on the time stepping in order to prevent spurious oscillations, this makes

the method applicable only to quasi-stable flows. Another drawback is that the

feedback force term, described in [19], contains two constants that need to be chosen

in an empirical way. Let us assume that V (x, t), (x, t) ∈ Ω×[0, T ], is a time-dependent

field, which needs to satisfy a time-dependent Dirichlet boundary condition VΓ(x, t)

along the boundary Γ. Then the force term FΓ is:

FΓ(x, t) = α

∫ t

0

(V (x, τ)− VΓ(x, τ)) dτ + β (V (x, t)− VΓ(x, t)) , (1.5)

with α ≤ 0, β ≤ 0. FΓ is the feedback to V (x, t)− VΓ(x, t) in order to obtain:

V (x, t)|Γ = VΓ(x, t).

The constant values α and β must be large, so that the obstacle reacts faster than the

flow and remains fixed. This large force term introduced in the NS equations make

the system stiff. E. M. Saiki, S. Biringen and C. Lee [100] extended the same idea

and improved the time-stepping issue, using central finite differences and an implicit

treatment of the force term. The main limitation of the original VBM is that the

interface needs to coincide with the Eulerian mesh nodes.

In [3], A.L.F. Lima E Silva and co-workers extended the VBM. It is implemented

with finite differences but without using any constant in the force term and without

any constraint on the immersed boundary geometry. The interpolation used to com-

pute the fluid velocity and pressure at the marker points is a second-order Lagrange

polynomial approximation. The spreading of the force is made using classical delta

functions. This is shown to behave well at high Reynolds numbers in the benchmark

problem of a flow past a cylinder.

Another interesting Immersed Boundary technique is the Blob Projection method

from R. Cortez and M. Minion [13]. This is based on the Vortex and Impulse methods
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[6, 12, 14, 13]. Built in the framework of 2D finite differences, a cutoff (blob) function

is used to regularize the force field when the projection operator is applied. Essentially,

the projection of the delta functions is computed analytically, which reduces the error

smearing. This blob projection demonstrates a better accuracy than the IBM, but

is limited by the condition of periodicity of the domain in order to have linearity of

the projection operator. This reduces the possibility of domain geometries, while its

implementation in not as simple as the IBM.

The Immersed Interface Method (IIM) developed by R.J. Leveque and L. Lee [66, 67]

is a clever variation of the IBM: the analytical pressure jump is explicitly incorporated

in the solver rather than using the divergence of discrete Dirac delta functions. The

pressure field is computed using a split local force density:

f = fτ + fη, (1.6)

where fτ and fη are its normal and tangential components to the interface. The

pressure jump condition is:

[[P ]] (s, t) =
fη(s, t)

∂X(s, t)/∂s
, (1.7)

where [[P ]] is the pressure jump across the interface and X(s, t), the position vector

of the interface.

However, this method is limited to sharp boundaries with no volume. The other

drawbacks are that it requires the normal and tangential components of the force

density, a special discretization of the NS equations near the interface, and an im-

plicit resolution of a system for the movement of the boundary at each time step.

Nevertheless, this allows us to have a good volume conservation property and actual

uniform second-order accuracy.
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1.4.3 The Hybrid Cartesian/Immersed Boundary (HCIB) for-

mulations

In [57], J. Mohd-Yusof derives the force term directly from the momentum equation,

then, B-splines are used for better distribution of the grid points over the domain.

Stability of the scheme is no longer reduced by the force term and there is no special

parameter to set up empirically. Essentially, the discretized momentum equation is

modified in order to impose the boundary conditions at the boundary points at each

time step. If we write a simplified momentum equation:

V n+1 − V n

∆t
= RHS(V n) + F n (1.8)

and assume that the boundary coincides with the mesh nodes, we have at the bound-

ary Γ:

F n
|Γ =

V n+1
|Γ − V n

|Γ
∆t

− RHS(V n)|Γ. (1.9)

Now if we impose V n+1
|Γ to satisfy the Dirichlet boundary condition V|Γ, we get this

expression of the direct force term:

F n
|Γ =

V|Γ − V n
|Γ

∆t
− RHS(V n)|Γ. (1.10)

F n = 0 outside of Γ. If we plug (1.10) back into (1.8), we get, at the interface:

V n+1
|Γ = V|Γ.

This method is called direct or momentum forcing and shows second-order accuracy

when applied to fixed interfaces.

Based on the idea of momentum forcing, Y.-H. Tseng and J. H. Ferziger presented

an efficient Ghost-Cell Immersed Boundary Method (GCIBM) [112] for simulating

turbulent flows in fixed complex geometries. The ghost-cell technique is used to
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interpolate the force term when the interface does not coincide with the Eulerian

mesh points.

A direct Immersed Boundary Method has been developed by J. Kim [54] and has

recently been extended to moving boundaries [60], based on mass source/sink as well

as momentum forcing, in the framework of finite-volume, staggered-mesh and frac-

tional step schemes. A similar method was implemented by E. A. Fadlun [25]. These

two techniques use a second-order interpolation scheme for evaluating the momentum

force on the Eulerian grid. The interpolation of the force over the grid determines

the accuracy of the scheme and can lead to force oscillations when moving boundaries

are involved [80].

In [5], 2D and 3D large-eddy simulations of flows in complex boundaries are made on

fixed Cartesian grids with finite differences. A new interpolation scheme is introduced

in order to reach the second-order accuracy, even at the artificial boundaries position.

A. Gilmanov introduced another HCIB method for moving immersed bodies in [39].

The sharp interface is discretized with an unstructured triangular mesh while the

solution around it, is reconstructed using a quadratic interpolation, along the normal

body direction, easy to compute with the triangular elements. Second-order accuracy

is achieved in 3D and a new hybrid staggered/non-staggered grid is introduced as

well.

A direct forcing variant of the immersed boundary method is presented in [116] by A.

Vikhansky. It is based on the original method from E. A. Fadlun and J. Mohd-Yusof

[25], using the same interpolation technique, associated with a variational principle.

This allows us to satisfy the boundary conditions using the points near the interface.

The interaction between the fluid and the rigid-body is described by the principle of

virtual work. This leads to a set of unconstrained minimization problems.
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Finally, in [113], M. Uhlmann exports the IBM regularized Dirac delta function into

a direct formulation of the force, for fluid/moving-solid interactions. The transfer

between Eulerian and Lagrangian representations is, then, smoother and the method

more stable.

1.4.4 The Finite-Element immersed boundary methods

Recent efforts have been made to extend the IBM to finite-element discretization.

W.K. Liu [64, 119, 121] introduced the Immersed Finite Element Method (IFEM)

to simulate fluid/deformable-structure interactions. This method allows us to have

immersed elastic structures with complex physical behaviors and a volume. It uses two

meshes: one Lagrangian mesh for the structure and one Eulerian mesh for the fluid

that covers the computational domain. Both the structure and the fluid are modeled

using the finite-element method, and the interpolation from one mesh to an other is

made using the Reproducing Kernel Particle Method (RKPM) delta function. This

method is harder to implement than the IBM but is uniformly second-order accurate,

even for the simulation of large solid deformations.

A recent, similar approach has been done by D. Boffi, L. Gastaldi and L. Heltai with

the Finite Element Immersed Boundary Method (FEIBM) [16, 17, 18]. However,

unlike the IFEM, there are no delta functions in the FEIBM. The advantage using the

finite-element method is that the delta functions can be handled with the variational

theory, without any regularization technique.

To sum up, the advantages of the artificial boundary techniques are that they are

easier to implement than the moving mesh methods and that they cost less CPU-

time and memory. The first drawback is that they require an interpolation process

or a change of stencil around the interface, difficult to implement or to extend to 3D
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and not always accurate. This can be avoided using the finite-element method but

with the cost of a more difficult implementation. The second drawback is that they

are usually unstable, due to a stiff NS system.

A similar approach to simulate fluid flows in complex geometries has been recently

developed. It is called the fictitious domain or domain embedding methods.

1.5 Fictitious Domain Methods

It is possible to group most of the artificial boundary methods listed above into the

theoretical set of Fictitious Domain (FD) techniques: the complex fluid domain is

extended into a larger one that is more regular. Then, the boundary conditions

are imposed using a constraint technique. The force term of the IBM is actually a

constraint in a FD technique, to create the force into the fluid flow, as R. Glowinsky

showed in [92].

The FD methods can be divided into three categories, depending on what the con-

straint is based upon:

� 1- Non body force based.

� 2- Body force based (but not Distributed Lagrange Multiplier (DLM) based).

� 3- DLM based.

The IBM actually belongs to the second category.

Now, in general, the constraint can be created numerically using two approaches:

� Penalty method.

� Duality method.
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The Penalty FD method will be described in detail in Chapter 7. Let us only explain

the general ideas behind these two methods. If we want to minimize a function f(x)

with x ∈ Rn, under the constraint: c(x) = 0, we minimize the functions

F (x, k) = f(x) + k (c(x))2 ,

with k going to infinity, using the penalty method and

F (x, k) = f(x) + kc(x),

using the duality method. This last category leads to the DLM method pioneered

by R. Glowinski. It is used to simulate particulate flows [92] or flows past fixed solid

bodies [93]. The method is very well described in [41]. The Lagrange multiplier is seen

as a pseudo body force, enforced into the interior of the immersed body, the fictitious

fluid, to satisfy the constraint of a rigid body motion. The FD methods have proved

to be efficient for the numerical treatment of domains containing moving bodies.

However, the method cannot be used to simulate the interaction between a fluid and

a flexible body with large deformations. F.P.T. Baaijens [4] and Zhaosheng Yu [123]

extended the method to general fluid/flexible-body interactions. The drawback of

F.P.T. Baaijens’ method is the assumption that the immersed body has no inertia or

local force density. The method implemented in [123] by Zhaosheng Yu consists of

dividing the problem into three sub-sets of equations:

� The motion equations for the fluid.

� The deformation equations for the flexible solid.

� The FD/DLM constraint equations of R. Glowinski et Al. [92] for the immersed

bodies.

However, the method suffers from some convergence issues. Zhaosheng Yu writes in

[123]: ”[...] the accuracy of our method is acceptable, despite the relatively poor
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convergence behavior with the solid mesh, which is the main source of numerical

errors in our scheme and, however, is mainly caused by the difficulty in solving the

solid problem alone.”

1.6 The Challenge regarding the IBM

To summarize, we want to avoid the moving mesh methods and look into four dif-

ferent categories of artificial boundary methods: the cut-cell methods, the immersed

boundary techniques, the hybrid Cartesian/immersed boundary formulations, and

the finite-element based immersed boundary techniques.

Within these categories, the hybrid Cartesian/immersed boundary formulations are

limited to small deformations or associated with complex interpolation techniques or

stencil modification. This last drawback applies to the cut-cell methods as well.

With most of the applications of fluid/flexible-body interaction being in bio-engineering,

we need a method that is easy to implement, efficient, and versatile: it should allow

large deformations, elastic boundaries with mass and/or volume, as well as diverse

complex flow geometries. These criteria, all together, direct us toward the IBM: this

is the simplest method to implement and one of the most versatile.

However, the IBM is penalized by two things:

� Its first-order accuracy along the interface due to the use of discrete Dirac delta

functions.

� Its instability due to the sharp force term that makes the NS equations system

stiff.

This is why we study the accuracy of the IBM in Chapter 4 and the stability in

Chapter 5. The other issue is efficiency. We focus on this in Chapter 6, by studying

a parallel implementation of the IBM.

23



First, we recall the computation of the incompressible NS with finite differences,

which is the framework of the IBM.
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Chapter 2

Numerical introduction to

Navier-Stokes computations with

finite differences

To be complete, here is a brief introduction to the incompressible NS equations,

in primitive variable, with their discretization in time and space, as we use in the

IBM. For the spacial discretization, we used the staggered mesh in order to have

smaller differential stencils. For the temporal discretization, we used different first or

second order projection schemes, but we only present here the basic fully explicit first

order projection scheme, for simplicity. Then we introduce some basic test cases and

implementations of the direct forcing method. Finally, we describe the solver used

and give the computational times for this basic NS implementation in MATLAB and

compare it with the same implementation done in FORTRAN.

To simplify the presentation, we will restrict this introduction to the two-dimensional

case.
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2.1 The Incompressible Navier-Stokes equations

The NS equations are partial differential equations that describe the flow of incom-

pressible fluids. In the primitive variable expression, we describe the flow with V , the

velocity vector field, and P , the pressure field. The parameters of the fluid are the

viscosity µ and the density ρ. The incompressible NS equations are:

ρ

[
∂V

∂t
+ (V.∇)V

]
= µ∆V −∇P + F (2.1)

∇.V = 0 (2.2)

F is the external force term, applied to the fluid. See the appendix for the derivation

of these equations.

Now we present one of the classical schemes to approximate the solution to this system

of PDEs.

2.2 The Projection method

The Projection method allows the derivation of a simple scheme to compute numerical

solutions of the system. We consider a closed rectangular physical domain Ω.

2.2.1 The Hodge decomposition

Let us start by evoking briefly the Hodge decomposition. Given the vector field W

defined in Ω, such that W.η = 0 on ∂Ω, η is the outward normal vector to the domain

boundary, there exists a unique decomposition of W into two parts:

W = Wdf +∇S, (2.3)

where Wdf is a divergence-free vector field and S, a scalar function. If we take the

divergence of (2.3), we get:
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∇.W = ∆S, (2.4)

since ∇.Wdf = 0 by definition. Another property of this decomposition is that Wdf

and S are orthogonal:

∫
Ω

Wdf .∇Sdv = 0. (2.5)

The idea of the projection method is to have a transformation from W to Wdf . Let

us call ℘, the linear projection operator to the divergence-free vector space, we have:

Wdf = ℘ [W ] . (2.6)

We can actually describe the operator ℘. From (2.4), we have S = [∆−1∇]W . If we

plug that back into (2.3), we get Wdf = W − [∇∆−1∇]W . This leads to the analytic

definition of the projection operator:

℘ = I −∇∆−1∇. (2.7)

2.2.2 The Projection of the explicit Navier-Stokes equations

If we come back to the NS equations in the rectangular domain Ω and apply the

projection operator to the momentum equation, we have:

℘

[
ρ
∂V

∂t

]
+ ℘ [∇P ] = ℘ [−ρ (V.∇)V + µ∆V + F ] . (2.8)

Since the velocity field has to be divergence-free and the projection of a gradient is

null, (2.8) becomes:

ρ
∂V

∂t
= ℘ [−ρ (V.∇)V + µ∆V + F ] . (2.9)
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By plugging (2.9) into the momentum equation (2.1), we obtain an expression for the

pressure gradient depending on the projection ℘:

∇P = (I − ℘) [−ρ (V.∇)V + µ∆V + F ] , (2.10)

where I is the identity operator. This projection method introduced independently

by A. J. Chorin [10] and R. Teman [108] is a way to deal with the difficulty of the

incompressible NS equations, that is, to compute both the velocity field and the

pressure scalar function at the same time, using only one constrained equation. To

summarize, the velocity is updated thanks to a divergence-free projection, while what

is left after the projection is used to update the pressure. Everything is based on the

fact that the momentum equation is a Hodge decomposition of

−ρ (V.∇)V + µ∆V + F

into the sum of the divergence-free vector field ρ∂V
∂t

and the pressure gradient ∇P .

Now for the basic projection method introduced by M. Fortin [68], we start from the

explicit momentum equation (2.1):

ρ

[
V n+1 − V n

∆t
+ (V n.∇)V n

]
= µ∆V n −∇P n+1 + F n (2.11)

∇.V n+1 = 0. (2.12)

We can split (2.11) to get this fractional-step method:

V ∗ = V n + ∆t

[
− (V n.∇)V n +

1

ρ
(µ∆V n + F n)

]
, (2.13)

V n+1 = V ∗ − ∆t

ρ
∇P n+1. (2.14)
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We can observe that (2.14) is a Hodge decomposition of V ∗: the divergence-free vector

field is V n+1 and the scalar function is ∆t
ρ

P n+1. Using the projection operator ℘, we

get:

V n+1 = ℘ [V ∗] , (2.15)

∆t

ρ
∇P n+1 = V ∗ − V n+1 = (I − ℘) [V ∗] . (2.16)

We rewrite (2.16) and take its divergence:

∇.∇P n+1 =
ρ

∆t

(∇.V ∗ −∇.V n+1
)
=

ρ

∆t
∇.V ∗, (2.17)

so that we get the basic projection scheme:

1- Velocity prediction

V ∗ = V n + ∆t

[
− (V n.∇)V n +

1

ρ
(µ∆V n + F n)

]
, (2.18)

2- Pressure equation

∆P n+1 =
ρ

∆t
∇.V ∗, (2.19)

3- Velocity correction

V n+1 = V ∗ − ∆t

ρ
∇P n+1. (2.20)

We will later detail the boundary conditions. This scheme is a first order method
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since the time discretization is explicit:

V n+1 − V n

∆t
= F (V n, tn) + O(∆t). (2.21)

An extensive number of second-order projection methods have been developed in the

past two decades [21]. We used one of them in many cases. They are usually as easy

to implement as the first-order projection scheme, except that special care has to be

taken on the pressure boundary conditions, which are highly related to the type of

projection.

Now that we have a basic time discretization, we describe the space discretization, in

the framework of finite difference and staggered grids rather than collocated, where

all the mesh nodes for u, v, p are located at the same place within the cells.

2.3 The Staggered mesh

This type of mesh allows us to carry more information about the fluid than the

collocated one, with the same amount of data. The other main advantage is related

to the pressure solver in the basic projection scheme for the NS equations. As we

will see, smaller stencils for the divergence and Laplace operators can be used in the

pressure equation, which reduces the smearing effect in the singular field cases.

2.3.1 Location of the nodes

Let us consider a rectangular domain Ω = [0, Lx] × [0, Ly] and a uniform mesh with

respective space steps hx = Lx

Nx−1
and hy = Ly

Ny−1
, so that the mesh nodes have the

coordinates:

(ihx, jhy), with 0 ≤ i ≤ Nx − 1 and 0 ≤ j ≤ Ny − 1.
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We use staggered locations for u and v, the horizontal and vertical velocity compo-

nents and the pressure p, as shown in Figure 2.1.

Figure 2.1: 2D staggered mesh.

The locations of the respective arrays are:

� u:
(
ihx,

(
j + 1

2

)
hy

)
with 0 ≤ i ≤ Nx − 1 and 0 ≤ j ≤ Ny − 2,

� v:
((

i + 1
2

)
hx, jhy

)
with 0 ≤ i ≤ Nx − 2 and 0 ≤ j ≤ Nx − 1,

� p:
((

i + 1
2

)
hx,

(
j + 1

2

)
hy

)
with 0 ≤ i ≤ Nx − 2 and 0 ≤ j ≤ Ny − 2.

2.3.2 A Smaller stencil

The first idea of the staggered mesh, introduced by F. H. Harlow and E. Welch [49] is

that we gather more information about the fluid by describing it at different locations

within each mesh cell, without increasing the size of the arrays compared to a regular

mesh, where both velocity and pressure are evaluated at the same points. The second

idea is related to the pressure correction equation of the projection scheme used to

solve the NS equations:

∆P = ∇.V

We need to evaluate the divergence of the velocity at first, but the stencil used for the

Laplace operator needs to be wider than the stencil used for the divergence operator,

in order to have good spacial propagation of the information. With the staggered
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mesh, we get second-order accuracy for the divergence operator, using only a four-

point spacial stencil of radius hx

2
in the x-direction and hy

2
in the y-direction, so that

we can use the classic five-point stencil for the Laplace operator, of radius hx in the

x-direction and hy in the y-direction (see Figure 2.2).

Figure 2.2: 2D finite difference stencils for the Laplace and divergence operators using

a staggered mesh.

2.4 The Finite difference operators

For all the operators except for the non-centered cases, the numerical error is pro-

portional to the square of the space step. The operators used in the NS equations

are:

� divergence,

� gradient,

� Laplace.
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2.4.1 The Divergence operator

The divergence is evaluated at the center of the mesh cells:

DhVh =

{
ui+1,j+ 1

2
− ui,j+ 1

2

hx

+
vi+ 1

2
,j+1 − vi+ 1

2
,j

hy

}
0≤i≤Nx−2,0≤j≤Ny−2

. (2.22)

The discrete divergence-free condition of the NS equations is then: DhVh = 0.

2.4.2 The Gradient operator

The discrete gradient operator is evaluated at the center of the mesh cells too:

GhVh =

{[
ui+1,j+ 1

2
− ui,j+ 1

2

hx

,
vi+ 1

2
,j+1 − vi+ 1

2
,j

hy

]T}
0≤i≤Nx−2,0≤j≤Ny−2

. (2.23)

2.4.3 The Laplace operator

Horizontal discrete second derivative operator:

(
D2

xw
)
i,j

=
wi+1,j − 2wi,j + wi−1,j

h2
x

. (2.24)

Vertical discrete second derivative operator:

(
D2

yw
)
i,j

=
wi,j+1 − 2wi,j + wi,j−1

h2
y

. (2.25)

These operators, D2
x and D2

y, are second-order finite difference approximations of

the horizontal and vertical second derivatives. Now, the Laplace operator with a

staggered mesh, is:

(∆hu)i,j+ 1
2

=
(
D2

xu
)
i,j+ 1

2

+
(
D2

yu
)
i,j+ 1

2

= 1
h2

x

(
ui+1,j+ 1

2
− 2ui,j+ 1

2
+ ui−1,j+ 1

2

)
+ 1

h2
y

(
ui,j+ 3

2
− 2ui,j+ 1

2
+ ui,j− 1

2

)
,

(2.26)
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0 < i < Nx − 1, 0 < j < Ny − 2.

(∆hv)i+ 1
2
,j =

(
D2

xv
)
i+ 1

2
,j
+
(
D2

yv
)
i+ 1

2
,j

= 1
h2

x

(
vi+ 3

2
,j − 2vi+ 1

2
,j + vi− 1

2
,j

)
+ 1

h2
y

(
vi+ 1

2
,j+1 − 2vi+ 1

2
,j + vi+ 1

2
,j−1

)
,

(2.27)

0 < i < Nx − 2, 0 < j < Ny − 1.

2.4.4 The Convective part

Convection is defined by:

(V.∇)V =


 u∂u

∂x
+ v ∂u

∂y

u ∂v
∂x

+ v ∂v
∂y

(2.28)

First, we need ũi+ 1
2
,j and ṽi,j+ 1

2
, approximations of u at {xi+ 1

2
, yj} and of v at

{xi, yj+ 1
2
}.

ũi+ 1
2
,j =

1

4

(
ui,j+ 1

2
+ ui+1,j+ 1

2
+ ui,j− 1

2
+ ui+1,j− 1

2

)
(2.29)

ṽi,j+ 1
2
=

1

4

(
vi+ 1

2
,j + vi+ 1

2
,j+1 + vi− 1

2
,j + vi− 1

2
,j+1

)

2.4.4.1 The Centered approximation

This approximation is:

convx
i,j+ 1

2
= ui,j+ 1

2

(
ui+1,j+ 1

2
− ui−1,j+ 1

2

2hx

)
+ ṽi,j+ 1

2

(
ui,j+ 3

2
− ui,j− 1

2

2hy

)
(2.30)

convy
i+ 1

2
,j
= ũi+ 1

2
,j

(
vi+ 3

2
,j − vi− 1

2
,j

2hx

)
+ vi+ 1

2
,j

(
vi+ 1

2
,j+1 − vi+ 1

2
,j−1

2hy

)
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Let us study the stability of this approximation, with the one-dimensional transport

equation:

∂u

∂t
+ v

∂u

∂x
= 0, v ∈ R. (2.31)

With a scheme forward in time and centered in space, we have:

un+1
j − un

j

∆t
+ v

un
j+1 − un

j−1

h
= 0. (2.32)

A Von Neumann stability analysis shows that this scheme is unstable. We write the

solution u as a sinusoidal perturbation of wave-number k and growth rate r ∈ C:

u(x, t) = ert+Ikx, I =
√−1. (2.33)

After discretization and using the notation U = er∆t for the amplitude of the per-

turbation, we get: un
j = UneIkjh. By plugging this expression into Eq. (2.32) and

simplifying, we have:

U = 1− v∆t

2h

(
eIkh − e−Ikh

)
= 1− I

v∆t

h
sin(kh). (2.34)

Then we evaluate the norm of U :

|U |2 = 1 +

[
v∆t

h
sin(kh)

]2

> 1. (2.35)

Thus this discretization of the convection is unconditionally unstable. The scheme

becomes stable only after adding the diffusive part, and under time step restriction.

2.4.4.2 The Upwind approximation

Another standard discretization of the convective part is the Upwind scheme. The

idea is that if the flux is moving in a certain direction, the incoming flux should only

depend on the concentration upstream, that is:
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v
∂un

j

∂x
= −v




un
j −un

j−1

h
, if v > 0

un
j+1−un

j

h
, if v < 0

For the transport equation, we get:

un+1
j − un

j

∆t
= −v




un
j −un

j−1

h
, if v > 0

un
j+1−un

j

h
, if v < 0

This is easy to code this way:

convx
i,j+ 1

2
= max(ui,j+ 1

2
, 0)

(
ui,j+ 1

2
− ui−1,j+ 1

2

hx

)
+ (2.36)

min(ui,j+ 1
2
, 0)

(
ui+1,j+ 1

2
− ui,j+ 1

2

hx

)
+

max(ṽi,j+ 1
2
, 0)

(
ui,j+ 1

2
− ui,j− 1

2

hy

)
+ min(ṽi,j+ 1

2
, 0)

(
ui,j+ 3

2
− ui,j+ 1

2

hy

)

convy
i+ 1

2
,j
= max(ũi+ 1

2
,j, 0)

(
vi+ 1

2
,j − vi− 1

2
,j

hx

)
+ (2.37)

min(ũi+ 1
2
,j, 0)

(
vi+ 3

2
,j − vi+ 1

2
,j

hx

)
+

max(vi+ 1
2
,j, 0)

(
vi+ 1

2
,j − vi+ 1

2
,j−1

hy

)
+ min(vi+ 1

2
,j, 0)

(
vi+ 1

2
,j+1 − vi+ 1

2
,j

hy

)

We perform the Von Neumann stability analysis to this scheme:

Un+1eIkhj − UneIkhj

∆t
= −max(v, 0)

UneIkhj − UneIkh(j−1)

h
(2.38)

−min(v, 0)
UneIkh(j+1) − UneIkhj

h
.

And we get, after simplification:

U = 1− ∆t

h

[
max(v, 0)−min(v, 0)−max(v, 0)e−Ikh + min(v, 0)eIkh

]
. (2.39)
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Since

v

2
+
|v|
2

= max(v, 0),

and

v

2
− |v|

2
= min(v, 0),

we get:

U = 1− |v|∆t

h
(1− cos(kh))− I

v∆t

h
sin(kh), (2.40)

and:

|U |2 =

[
1− |v|∆t

h
(1− cos(kh))

]2

+

(
v∆t

h
(1− cos(kh))

)
. (2.41)

The stability criterion is:

|v|∆t

h
≤ 1.

This is the famous Courant-Friedrichs-Lewy stability criterion, |v|∆t
h

is the Courant

number which is simply the number of grid points travelled by the fluid in a single

time step. If the time step is too large and the fluid is going faster than the numerical

propagation, instability is created.

With this upwind approximation, we get a better behavior of the model for high

Reynolds numbers.

2.4.4.3 The Skew symmetric approximation

We can re-write (2.27) in order to get this skew-symmetric expression of the convec-

tion, using the incompressibility condition:

convx =
1

2
(V.∇u +∇.(V u)) (2.42)
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convy =
1

2
(V.∇v +∇.(V v))

After discretization, this new expression induces conservation of kinetic energy, using

integration by parts and periodic boundary conditions, which is important for long

time integration:

1

2

∂‖V TV ‖2h
∂t

= 0.

In a turbulent case, it is known to give more accurate results.

2.4.4.4 The Method of Characteristics

The method of characteristics is used to solve initial value problem for general first

order Partial Differential Equations (PDE). It consists of changing the regular coor-

dinates (x, t) for space and time, into new ones (x̄, t̄) for which the PDE become an

ordinary differential equation along specific curves of the space. These curves

{x (x̄, t̄) , t (x̄, t̄) /t̄ > 0}

for fixed x̄, are called the characteristic curves of the PDE. If we come back to the

one-dimensional transport equation:

∂u

∂t
+ v

∂u

∂x
= 0, v ∈ R,

the characteristic curves are:

∂x

∂t̄
= v, (2.43)

∂t

∂t̄
= 1. (2.44)

We get:

∂u

∂t̄
=

∂t

∂t̄

∂u

∂t
+

∂x

∂t̄

∂u

∂x
= 0. (2.45)
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The method consists of solving Eq.(2.43) and (2.44), in order to have the transfor-

mation from (x, t) to (x̄, t̄):

x = x(x̄, t̄),

t = t(x̄, t̄).

Then, we solve the ordinary differential Eq.(2.45) and get a solution in terms of x̄ and

t̄. Finally, we use the inverse transformation from (x̄, t̄) to (x, t), to get the solution

u(x, t). This method is easy to implement, relatively accurate and stable, while being

known to have good conservative properties.

2.5 The Boundary conditions

Let us assume that the two-dimensional fluid is in a closed box Ω = [0, Lx]× [0, Ly],

which means that there is a no-slip boundary condition on each side of the box:

u(0, y) = u(Lx, y) = v(0, y) = v(Lx, y) = 0 for 0 ≤ y ≤ Ly, (2.46)

u(x, 0) = u(x, Ly) = v(x, 0) = v(x, Ly) = 0 for 0 ≤ x ≤ Lx. (2.47)

2.5.1 The Extended staggered mesh

In order to apply these boundary conditions to the discrete solution, we use an ex-

tended mesh: each field gets extra ghost points across the boundary, outside the

physical domain and only on the sides where the discrete nodes do not lie on the

boundary. The sides are for u: y = 0, y = Ly and for v: x = 0, x = Lx. The four

sides are extended for the pressure field since the discretized points are inside the

mesh cells.

The new sizes of the arrays are:

� u: Nx × (Ny + 1),
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Figure 2.3: Staggered extended mesh. The horizontal segments indicate the location

of uh, the vertical ones vh and the dots ph.

� v: (Nx + 1)×Ny,

� p: (Nx + 1)× (Ny + 1).

It is now easy to express the conditions (2.46) and (2.47) with a simple reflection

technique:

� ui,0 = 2u(xi, 0)− ui,1 with 0 ≤ i ≤ Nx,

� ui,Ny+1 = 2u(xi, Ly)− ui,Ny with 0 ≤ i ≤ Nx,

� v0,j = 2v(0, yj)− v1,j with 0 ≤ j ≤ Ny,

� vNx+1,j = 2u(Lx, yj)− vNx,j with 0 ≤ j ≤ Ny,

with xi = ihx and yj = jhy, or, in order to achieve better accuracy:

� ui,0 = 1
3
(8u(xi, 0)− 2ui,1 + ui,2) with 0 ≤ i ≤ Nx,

� ui,Ny+1 = 1
3

(
8u(xi, Ly)− 2ui,Ny + ui,Ny−1

)
with 0 ≤ i ≤ Nx,
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� v0,j = 1
3
(8v(0, yj)− 2v1,j + v2,j) with 0 ≤ j ≤ Ny,

� vNx+1,j = 1
3
(8u(Lx, yj)− 2vNx,j + vNx−1,x) with 0 ≤ j ≤ Ny,

2.5.2 The Pressure equation boundary conditions

It is important to note that the pressure field in this projection scheme is not phys-

ical, but artificial. As we can read in [38], ”The Navier-Stokes equations may be

considered as a boundary value problem for velocity [momentum equation (2.1)] with

Lagrange multiplier P which is introduced in order to compensate the additional con-

straint [conservation of mass equation (2.2)]. From this point of view, no boundary

condition for pressure is needed. The number of degrees of freedom for the discrete

pressure variable should be then equal to the number of discrete constraint equa-

tions [momentum equation (2.1)]. [The pressure equation] is to be considered as a

constituent of the projection operator; on the discrete level, it may appear from alge-

braic arguments rather than from an approximation of a boundary value problem.”

The pressure boundary conditions are dictated by algebraic reasons.

If we project Eq.(2.20) on η, the normal outward unit vector at the domain boundary

∂Ω, we get:

V n+1
|∂Ω .η − V ∗

|∂Ω.η =
∆t

ρ
∇P n+1

|∂Ω .η =
∆t

ρ

[
∂P n+1

∂η

]
|∂Ω

. (2.48)

So we have some Neumann boundary conditions for the pressure equation:

∆P n+1 =
ρ

∆t
∇.V ∗, (2.49)

[
∂P n+1

∂η

]
|∂Ω

=
ρ

∆t

[
V ∗
|∂Ω.η − V n+1

|∂Ω .η
]
, (2.50)

depending on V ∗
|∂Ω. However, we note that since V ∗ is calculated with an explicit

scheme, the inner points of V ∗ do not depend on V ∗
|∂Ω.
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The pressure equation along with this type of boundary conditions is a Neumann

problem. A constraint for V ∗
|∂Ω is that the Neumann problem compatibility condition

is satisfied:

∫
Ω

∆P n+1dϑ =

∫
∂Ω

[
∂P n+1

∂η

]
|∂Ω

dς. (2.51)

If we use (2.49) and (2.50), we get:

∫
Ω

ρ

∆t
∇.V ∗dϑ =

∫
∂Ω

ρ

∆t

[
V ∗
|∂Ω.η − V n+1

|∂Ω .η
]
dς. (2.52)

The constants vanish and Green-Ostrogradski’s theorem gives us:

∫
Ω

∇.V ∗dϑ =

∫
∂Ω

V ∗
|∂Ω.ηdς, (2.53)

and

∫
Ω

∇.V n+1dϑ =

∫
∂Ω

V n+1
|∂Ω .ηdς. (2.54)

Finally the compatibility condition for the Neumann problem is:

∫
Ω

∇.V n+1dϑ = 0, (2.55)

which is independent of V ∗
|∂Ω and of course satisfied, since V n+1 is a divergence-free

vector field.

As it is explained in [91], a numerical specificity of the staggered mesh and the explicit

projection scheme is that the discrete solution V n+1
h is actually independent from the

discrete value of V ∗
h,|∂Ω. Let us consider, for example, the discretization of the pressure

equation (2.49) around the boundary x = 0, 0 ≤ y ≤ Ly:

1

hx

(
P n+1

2,j − P n+1
1,j

hx

− P n+1
1,j − P n+1

0,j

hx

)
(2.56)
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Figure 2.4: Left boundary of Ω with a staggered extended mesh.

+
1

hy

(
P n+1

1,j+1 − P n+1
1,j

hy

− P n+1
1,j − P n+1

1,j−1

hy

)
=

1

∆t

(
u∗

3
2
,j
− u∗

|∂Ω,j

hx

+
v∗
1,j+ 1

2

− v∗
1,j− 1

2

hy

)
.

Let us apply the boundary condition (2.50) on this side of Ω:

1

hx

(
P n+1

1,j − P n+1
0,j

)
= − 1

∆t

(
un+1,j
|∂Ω − u∗

|∂Ω,j

)
. (2.57)

If we plug that into (2.56), we get:

1

hx

(
P n+1

2,j − P n+1
1,j

hx
+

1

∆t

(
un+1,j
|∂Ω − u∗

|∂Ω,j

))
(2.58)

+
1

hy

(
P n+1

1,j+1 − P n+1
1,j

hy
− P n+1

1,j − P n+1
1,j−1

hy

)
=

1

∆t

(
u∗

3
2
,j
− u∗

|∂Ω,j

hx

+
v∗
1,j+ 1

2

− v∗
1,j− 1

2

hy

)
.

The terms u∗
|∂Ω,j on the left-hand side and the right-hand side cancel each other. By

doing the same computation on the other sides of the domain, we show the numer-

ical independence of the solution with respect to V ∗
|∂Ω. Thus, we can choose some
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convenient arbitrary values for V ∗
|∂Ω such as:

V ∗
|∂Ω = V n+1

|∂Ω .

In that case, Eq.(2.48) implies that we have uniform homogeneous Neumann boundary

conditions for the pressure equation in the projection scheme.

Now we look at some basic 2D NS test cases. Some of them involve the direct forcing

method, presented in chapter 1, to model obstacles.

2.6 The Driven cavity flow

2.6.1 Two-dimensional cavity flow

The flow is moving in a closed square box Ω = [0, 1]2 where the upper wall is moving

sideways:

� u(0, y) = u(1, y) = v(0, y) = v(1, y) = 0, for 0 ≤ y ≤ 1,

� u(x, 0) = v(x, 0) = v(x, 1) = 0, for 0 ≤ x ≤ 1,

� u(x, 1) = 4x(1− x), for 0 ≤ x ≤ 1.

The velocity of the fluid is null initially and then converges into a steady state,

depending on the Reynolds number:

Re =
ρL|V |

µ
, (2.59)
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where L is the characteristic length and V the characteristic velocity. In our case,

both are equal to one. Figures 2.5 and 2.6 show the horizontal and vertical component

of the velocity for Re = 1000.
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Figure 2.5: Contour of u after convergence.

Re=1000. Problem size: 600× 600.
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Figure 2.6: Contour of v after convergence.

Re=1000. Problem size: 600× 600.

2.6.2 Two-dimensional cavity flow with obstacle

A fixed obstacle is inserted in the cavity using a simple momentum forcing method of

J. Mohd-Yusof [57]. Figures 2.8 and 2.9 show the velocity fields in the driven cavity

with a Reynolds number of 200, a geometry shown in Figure 2.7, at time t = 1.1s.
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Figure 2.7: Domain geometry.
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Figure 2.8: Contour of u. Cavity with ob-

stacle.
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Figure 2.9: Contour of v. Cavity with ob-

stacle.

2.6.3 Three-dimensional cavity flow

This is the same cavity test case without obstacle as before but in three dimensions.

The upper wall is moving in an unit closed box (see Figures 2.10, 2.11, 2.12 and 2.13).

However, we are very limited by the size of the problem in MATLAB.
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Figure 2.10: Contour of u(x, y, 0.8).
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Figure 2.11: Contour of v(x, y, 0.8).

2.7 The Poiseuille flow with obstacle

The velocity on the inflow (left) is forced while the outflow (right) is a free boundary,

the walls (top and bottom) have a no-slip boundary condition:
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Figure 2.12: Contour of w(x, y, 0.8).
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Figure 2.13: Contour of p(x, y, 0.8).

� left: u = u0(y), v = 0, ∂p
∂x

= 0,

� right: ∂u
∂x

= ∂v
∂x

= 0, p = 0,

� top and bottom: u = v = 0, ∂p
∂y

= 0.

An obstacle is inserted in the computational domain using the momentum forcing

method. Figure 2.14 shows the geometry of the domain: the obstacle in this case, is

not exactly placed in the middle of the channel.
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Figure 2.14: Domain geometry.

Figures 2.15 and 2.16 show the contours of u and v respectively with a Reynolds

number of 800.

With an interpolation technique, we can apply the momentum forcing to any shaped

obstacle. In the following case, we choose a circular obstacle (Figure 2.17). Here we
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Figure 2.15: Contour of u.
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Figure 2.16: Contour of v.

have a high Reynolds number, which causes the apparition of Von Karman Vortices.

We can see the periodic nature of this Von Karman vortex street on the figure.
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Figure 2.17: Flow past a cylinder.

Another test case that uses the momentum forcing is the step test case: the obstacle

is located at the bottom left of the channel (Figures 2.18 and 2.19).
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Figure 2.18: Contour of u. Step test case.
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Figure 2.19: Contour of v. Step test case

2.8 A Note on the numerical solvers

MATLAB offers a broad variety of efficient solvers: direct or indirect methods (Krylov

methods). It is better to use the MATLAB solvers that call C procedures than to

actually code the methods, specially the iterative methods, since MATLAB is an

interpreted language. However, our multigrid implementation gave some good results,

due to the efficiency of the method.

For the IBM, it is better to use a direct solver: the decomposition is computed once

and for all in the initialization phase of the NS code. The pressure solver uses this

decomposition at every time step. We actually use the MATLAB LUPQ solver, which

uses the UMFPACK library [22]. The operator matrix M is decomposed into a unit

lower triangular matrix L, a upper triangular matrix U , a permutation matrix P

and a column reordering matrix Q so that PMQ = LU , using the fact that it is a

sparse matrix. This factorization, based on a tree and special ordering, optimizes

the memory access patterns. The UMFPACK decomposition provides particularly

good performance in MATLAB compared to the original MATLAB LU solver that is

typically two to three times slower for relatively large sizes of arrays.

To give an idea about the performance of MATLAB compared to FORTRAN, we
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ran the 2D Poiseuille flow test case using the same code, written in both languages.

However, the FORTRAN code uses a classic LINPACK LU solver while the MATLAB

one uses the UMFPACK LU solver. The elapsed time in MATLAB is measured using

the etime function that measures the actual clock time. This has been made on an

AMD 2.0GHz Opteron with a 64 bit architecture and 32 GB of RAM. The Pathscale

FORTRAN compiler was used with the full optimization flag −O3.

Problem size Numb. of time steps FORTRAN MATLAB

400× 100 100 14.35s 37.82s

800× 200 50 39.82s 81.17s

1200× 300 50 122.51s 121.50s

Table 2.1: Elapsed time for the 2D poiseuille flow code, using MATLAB or FOR-

TRAN.

The overhead due to the the interpreted language is decreasing when the problem size

increases. The larger the problem is, the more time we spend solving the linear system

of the pressure with the C solver routines. At the same time, the larger the problem

is, the larger the operator matrix is, the more we benefit from the memory access

optimization from UMFPACK. With these two factors combined, we obtain a similar

elapsed time for a relatively large problem size, using MATLAB or FORTRAN.

Now that we have introduced the incompressible NS computations, their basic dis-

cretization and the solver we used, we present the IBM.
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Chapter 3

The Immersed Boundary Method

We introduced the main idea behind the IBM in the first chapter. Now we describe the

actual implementation of the IBM. Then we present the applications and the recent

developments of the method. Finally, we introduce some of the IBM test cases.

While the IBM has been extended for elastic membrane with mass and volume or

two-phase flow simulations, we consider here the discretization of the massless sharp

membrane. Another restriction here, is that the IBM we present, is fully explicit. We

use some semi-implicit and fully implicit schemes, which are described in Chapter 5,

about the stability of the method. For simplicity again, we only consider the two-

dimensional case, where Γ, the immersed boundary, is a continuous one-dimensional

incompressible massless elastic membrane.

The IBM is based on two equations: the first one deals with the repartition of the

curvilinear force density on the Cartesian grid and the second one with the motion

of the immersed boundary.
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3.1 The Force term

3.1.1 The Elastic force

Let f(s, t) be the local elastic force density along Γ, the immersed boundary: 0 <

s < 1 is the curvilinear coordinates and 0 < t < T is the time. We need at first to

describe the elastic law followed by f . We usually use Hooke’s law, i.e. the tension

T in the boundary is a linear function of the strain:

T (s, t) = T

(∣∣∣∣∂X(s, t)

∂s

∣∣∣∣
)

= σ

∣∣∣∣∂X(s, t)

∂s

∣∣∣∣ (3.1)

The vector X(s, t) is the position vector of the moving boundary expressed in the

Cartesian coordinates. σ is the elastic coefficient. In this case, the boundary is never

resting, the tension is always positive.

The tension is a scalar value, but it is applied to a point of Γ along a tangential

direction by definition, that is, along the unit tangent vector τ(s, t):

τ(s, t) =
∂X(s, t)/∂s

|∂X(s, t)/∂s| (3.2)

Now if we evaluate the elastic force applied on a small segment region [s0, s0 + ε] of

Γ, we get:

T (s0 + ε, t)τ(s0 + ε, t)− T (s0, t)τ(s0, t).

which is equal to: ∫ s0+ε

s0

∂ (T (s, t)τ(s, t))

∂s
ds.

The immersed boundary being massless and without any volume, by taking the limit

when ε −→ 0 of the derivative of this force, we can say that the local density force

applied by the elastic membrane to the fluid at the point s0 is:

f(s0, t) =
∂(T (s0, t)τ(s0, t))

∂s
, (3.3)
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This corresponds to the relationship between the local force density and the tension

along Γ. So in the case of Hooke’s law, we have:

f(s, t) =
∂
(
σ
∣∣∣∂X(s,t)

∂s

∣∣∣ ∂X(s,t)/∂s
|∂X(s,t)/∂s|

)
∂s

=
∂

∂s

(
σ
∂X

∂s

)
= σ

∂2X

∂s2
(3.4)

It is possible to decompose the local force density as the sum of a normal and a

tangential component:

f(s, t) =
∂(T (s, t)τ(s, t))

∂s
=

∂T (s, t)

∂s
τ(s, t) + T (s, t)

∂τ(s, t)

∂s
, (3.5)

with:

T (s, t)
∂τ(s, t)

∂s
= T (s, t)

∣∣∣∣∂X(s, t)

∂s

∣∣∣∣ |∂τ(s, t)/∂s|
|∂X(s, t)/∂s|

∂τ(s, t)/∂s

|∂τ(s, t)/∂s| .

If we call K(s, t) the curvature of Γ and η(s, t) its normal vector, we have:

K(s, t) =
|∂τ(s, t)/∂s|
|∂X(s, t)/∂s| ,

and : η(s, t) =
∂τ(s, t)/∂s

|∂τ(s, t)/∂s| .

Thus, if we plug K and η back into the expression of f , we get:

f(s, t) =
∂T (s, t)

∂s
τ(s, t) + T (s, t)

∣∣∣∣∂X(s, t)

∂s

∣∣∣∣K(s, t)η(s, t). (3.6)

Now, another possible choice for the tension T is:

T (s, t) =




σ
(∣∣∂X

∂s

∣∣− 1
)
,

∣∣∂X
∂s

∣∣ ≥ 1

0, otherwise.

In this case the boundary has an equilibrium position but no contraction force. In

order to have both extension and contraction forces in the boundary we would use

this tension:
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T (s, t) = σ

(∣∣∣∣∂X

∂s

∣∣∣∣− 1

)
(3.7)

Then the Cartesian force term F introduced in the Navier-Stokes equations is:

F (x, t) =

∫
Γ

f(s, t)δ(x−X(s, t))ds, (x, t) ∈ Ω× [0, T ], (3.8)

using a simple property of the Dirac delta function.

3.1.2 The Discrete Dirac delta function

The force term is ideally zero everywhere except along Γ. By definition:

F (x) =

∫
Γ

f(s)δ(x−X(s))ds =


 f(s) if x = X(s),

0, otherwise.
(3.9)

In the computations, the δ function above is actually regularized by a discrete Dirac

delta function of compact support. The aim is to minimize the discretization error

introduced by this regular function δh while the requirements due to the stencil used

in the finite-difference discretization and the physical behavior of the elastic moving

boundary are satisfied. These requirements are detailed in Chapter 4.

−2
0

2

−2

0

2
0

0.1

0.2

Figure 3.1: 2D exemple of a discrete Dirac delta function δh, with h = 1.
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3.1.3 The Discrete force term

Let us describe the force term after discretization of the immersed boundary, without

considering the time dependency. In this case we assume Γ to be a closed curve.

We take a uniformly distributed set of M discrete points along Γ. Then the discrete

curvilinear mesh is : sk = k
M

LΓ = khΓ, 0 ≤ k ≤ M − 1. LΓ is the length of Γ and

hΓ = LΓ

M
, its curvilinear space step. So, the Cartesian force term can be written as:

Fh(x) = hΓ

M−1∑
k=0

f(sk)δh(x−X(sk)), x ∈ Ω. (3.10)

The two-dimensional discrete Dirac delta function is equal to the product of the

one-dimensional delta functions for each Cartesian component:

δh(x1, x2) = δh(x1)δh(x2.) (3.11)

So for each node, we have, with x = [x1, x2], Xk = X(sk) = [X1(sk), X2(sk)] =

[X1,k, X2,k] and f(sk) = fk = [f 1
k , f

2
k ]:

F l(x) = hΓ

M−1∑
k=0

f l
kδh(x1 −X1,k)δh(x2 −X2,k), l = 1, 2. (3.12)

If we use Hooke’s law and centered finite-differences, we have:

f l
k = σ

∂2Xl(sk)

∂s2
= σ

Xl,k+1 − 2Xl,k + Xl,k−1

h2
Γ

, l = 1, 2.

Now we discretize x: xi,j = [x1,i, x2,j], such that x1,i = (i − 1)h, x2,j = (j − 1)h

(1 ≤ i, j ≤ N), h = 1
N−1

.

We get:

F l
i,j = hΓ

M−1∑
k=0

f l
kδh(x1,i −X1,k)δh(x2,j −X2,k), l = 1, 2 1 ≤ i, j ≤ N, (3.13)

and finally:
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F l
i,j =

σ

hΓ

M−1∑
k=0

(Xl,k+1 − 2Xl,k + Xl,k−1) δh(x1,i−X1,k)δh(x2,j−X2,k), l = 1, 2 1 ≤ i, j ≤ N.

(3.14)

It is important to note that the support of δh is limited to a few space steps and that

we only use the discrete Cartesian points inside the support of each delta function δk

when we evaluate the Cartesian force term F . This saves a lot of computation. You

can see an example of F on Figure (3.2).
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Figure 3.2: 2D example of the horizontal component of a Cartesian force term F along

the closed elliptic immersed boundary Γ.

3.2 The No-Slip boundary condition

The immersed boundary is moving at the same speed as the neighboring fluid parti-

cles. This is expressed in this equation:

∂X(s, t)

∂t
= V (X(s, t), t). (3.15)

The same interpolation technique as before is used to interpolate the Cartesian field

V , the fluid velocity, into the Lagrangian vector ∂X
∂s

:
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∂X(s, t)

∂t
=

∫
Ω

V (x, t)δ(x−X(s, t))dx. (3.16)

After time and space discretization (V = [V (1), V (2)]), we have:

Xn+1
l,k −Xn

l,k

∆t
= h2

N∑
i=1

N∑
j=1

V
(l)
i,j δh(x1,i−X1,k)δh(x2,j −X2,k), l = 1, 2 , 0 ≤ k ≤M −1.

(3.17)

3.2.1 The Explicit Scheme for the IBM

Here is a simplified description of the basic scheme for the IBM:

fn
k = σ

[
Xn

k+1 − 2Xn
k + Xn

k−1

hΓ

]
, 0 ≤ k ≤M − 1 (3.18)

F n
i,j =

M−1∑
k=0

fn
k δh(xi,j −Xn

k )hΓ, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1. (3.19)

ρ

[
V ∗ − V n

∆t
+ (V n.∇)V n

]
= µ∆V n −∇P n + F n, (3.20)

∆δP n =
ρ

∆t
∇.V ∗,

[
∂(δP n)

∂η

]
|∂Γ

= 0. (3.21)

ρ

[
V n+1 − V ∗

∆t

]
= −∇(δP n+1). (3.22)

P n+1 = P n + δP n. (3.23)

Xn+1 −Xn

∆t
= h2

Nx−1∑
i=0

Ny−1∑
i=0

V n+1
i,j δh(xi,j −Xn). (3.24)

Only first order convergence rates have been observed for simulations of sharp im-

mersed elastic boundaries.
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3.3 Some Applications of the IBM

The method has been originally developed for blow flow in the heart [86, 87, 24].

However, we find applications of the IBM to many different cases. Most of them are

found in Biology, for example:

� Models of stenoses [2].

� Models of red blood cells [27].

� Models of aquatic animal locomotion [30].

� Models of cochlea [8].

� Models of platelet adhesion and aggregation during blood clotting [32].

� Models of insect flight [76, 77].

Or we find it in more general fluid dynamics problems:

� Dynamics of suspension [104], particulate flows [113].

� Drop dynamics [35, 36].

� Simulation of a flapping flexible filament in a flowing soap film by the immersed

boundary method [124].

� Flow past complex fixed geometries [54, 3].

� Flow around an arbitrarily moving body [60].

� Models of parachutes and flags [61, 62].

More applications can be found in [89]. The diversity of the IBM applications shows

the versatility of the method. Now we look at the recent developments of the method.
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3.4 Recent developments of the IBM

We refer to [89] for a summary of the IBM advances. Some efforts have been made to

increase the accuracy, the stability, the efficiency and the versatility of the method.

Basically, the usual IBM has a second order convergence in time and space, except

in the neighborhood of the sharp interface where it is only of first order. It is fairly

unstable too, which means that the time stepping is far below the CFL condition in

the cases of stiff elastic membranes.

In [97], A.M. Roma implements the IBM on a staggered grid with the adaptive mesh

refinement technique in the neighborhood of the immersed boundary. This gives rise

to a local multilevel method. However, this technique with moving grids is hard

to implement and is limited by the time stepping, proportional to the smallest grid

space step. In [65], M.C. Lai and C.S. Peskin introduce an IBM with formal second-

order accuracy and reduced numerical viscosity. However, only first order convergence

properties have been observed computationally, in the case of non-smooth solutions.

Similarly in [44], an actual second order IBM is introduced, but the measured con-

vergence order does not correspond to cases of infinitely thin membranes and the

projection scheme is such that the divergence of the fluid flow only converges to zero

with a second order rate.

As for the efficiency of the method, an effort is being made on the parallelization

of the method for 3D simulations [70, 44]. Finally, some work has been done to

extend the possibilities of applications of the IBM: in [62] for example, Y. Kim and

C.S. Peskin detail the simulations of immersed boundaries with a different density

than the fluid, interacting with the flow. In regular IBM simulation, the immersed

boundary is considered as massless if it does not have a volume, or to have the same

density as the fluid, if it has a volume.
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3.5 The Test cases

Let us present the test cases used in this numerical study of the IBM.

3.5.1 The Bubble test case

The first test case that we use is the 2D ”bubble” test-case (Figure 3.3): a closed

elastic moving boundary is immersed inside an incompressible fluid. The domain is a

closed square box. At the beginning the fluid velocity is null and the elastic boundary

is stretched, with a large potential energy.
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Figure 3.3: ”Bubble” test-case

3.5.2 The Driven cavity bubble test-case

This 2D test case is similar to the ”bubble” test case, except that one of the walls of

the square box is moving tangentially and that the ”bubble” is not initially stretched

(Figure 3.4). It is interesting to study the behavior of the closed elastic immersed

boundary inside a strong cavity flow, especially around the sliding wall. In this test

case, being a stiff time-dependant case of the IBM, we studied the stability and the

volume conservation property of the scheme, comparing the two different discrete
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Dirac delta functions. In this particular case, we have again σ = 10000, M = 6N ,

µ = 1 and a sliding velocity for the upper wall of −500.
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Figure 3.4: Cavity flow ”bubble” test case. The upper wall is sliding to the left.

The other test cases that we implemented are more specific to blood flows:

� Two-dimensional artery flow.

� Large blood cells flowing in the two-dimensional driven cavity.

� Large blood cell flowing in a two-dimensional channel, with an obstacle.

These two last test cases rise the issue of the contact between immersed boundaries,

or between an immersed boundary and a fixed obstacle. This needs to be explored.

Now we start the study, with the accuracy of the IBM.
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Chapter 4

Accuracy

The IBM requires the interpolation of some Lagrangian variables into Eulerian fields

and vice-versa. Its interpolating tool is the discrete Dirac delta function, which is a

regularization of the Dirac function. If we call f(X), X ∈ Γ, the Lagrangian variable

and F (x), x ∈ Ω, the Eulerian field, we recall that the two interpolation formulas of

the IBM are:

f(X) =

∫
Ω

F (x)δ(x−X)dx, (4.1)

F (x) =

∫
Γ

f(X)δ(x−X)dX. (4.2)

As seen in the introduction, Eq.(4.1) is used after the NS computations, for the

boundary position update, while Eq.(4.2) is used before, for the flow computation.

Thus, the first equation has more impact on the stability of the method and the

second one on the accuracy.

This chapter describes several methods, whose final purpose is to improve the accuracy

of the IBM. More precisely, we want to improve the computation of the pressure in

the basic NS projection scheme when a singular force term is introduced. This is why
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the main issue is solving elliptic problems with singular source terms under the IBM

constraints, in order to solve the equations with F (x) from Eq.(4.2) as the right-hand

side, with a good uniform accuracy. Here are the main points in each section:

� Section 1. Optimal choice for the discrete Dirac delta function, in the framework

of the IBM.

� Section 2. Application to elliptic problems with singular source terms.

� Section 3. Application to the IBM. Introduction of a globally conservative

scheme based on constrained optimization.

� Section 4. A fast and accurate solver: the Multigrid/τ -extrapolation technique.

� Section 5. A correction technique to improve accuracy.

Let us start with a detailed description of the requirements and properties of the

discrete Dirac delta function.

4.1 The Discrete Dirac delta function

The Discrete Dirac delta function is usually written in this form:

δh(x) =
1

h
φ
(x

h

)
, (4.3)

where h is the space step. The function φ needs to satisfy several compatibility

conditions with the IBM.

4.1.1 The Requirements of the discrete Dirac delta functions

for the IBM

Here are the conditions introduced by C. Peskin [88]:
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� (i) φ ∈ C0(R), necessary for a smooth interpolation.

� (ii) φ is of finite support. The computational cost of the method is actually

proportional to the width of the support.

� (iii)
∑

i∈Z
φ(r − i) = 1, ∀r ∈ R: ensures that constant functions are interpo-

lated exactly by δh.

� (iv)
∑

i∈Z
(r − i)φ(r − i) = 0, ∀r ∈ R: first moment condition, which ensures

along with condition (3) that linear functions are interpolated exactly by δh.

Physically, these last two properties ensure that the mass, force and torque identities

are satisfied in the IBM, in terms of Eulerian or Lagrangian variables. C. Peskin

writes in [89] that thanks to these conditions: ”momentum, angular momentum and

energy are not spuriously created or destroyed by the interaction equations.”

Condition (iii) is sufficient in the case of a staggered mesh but not of a collocated

mesh. This comes from the use, in the numerical scheme, of the central difference

operator D2h:

D2h(u(x)) =
u(x + h)− u(x− h)

2h
.

The null space of this operator is two-dimensional and contains all the functions

u such that u(x0 + (i − 1)h) = u(x0 + (i + 1)h) ∀i and more specifically, after

discretization, all the sets {ui} such that {ui}i even or {ui}i odd are constant. In order

to avoid oscillations when the operator D2h is applied to discrete fields interpolated

from the Lagrangian functions with the shifted discrete Dirac delta functions, we need

to have this condition:

� (v)
∑

i(even) φ(r − i) =
∑

i(odd) φ(r − i) = C1, ∀r ∈ R.

This, associated with condition (iii) on φ, yields: C1 = 1
2
. In the case of a staggered

mesh, we use the difference operator Dh to compute the divergence:
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Dh(u(x)) =
u(x + h

2
)− u(x− h

2
)

h
,

which only requires condition (iii) but not (v), to avoid oscillations.

The last condition introduced by C. Peskin [88, 90] is quiet theoretical:

� (vi)
∑

i∈Z
[φ(r − i)]2 = C2 ≤ 1, ∀r ∈ R.

In the IBM, the distributed force term is a sum of weighted shifted discrete Dirac

delta functions. This force term is introduced in the NS equations in order to update

the velocity, which is then used to change the immersed boundary position, using

weighted, shifted discrete Dirac delta functions again. Assuming that the updated

velocity contains the unmodified force term, then in the immersed boundary position

update process, some shifted discrete Dirac delta functions are multiplied by them-

selves when the supports of the delta functions intersect. C. Peskin explains that,

”in this two-step process, one would like the interaction of a fiber point with itself to

be constant, independently of where that point sits with respect to the fluid lattice.”

This is what condition (vi) ensures. Furthermore, by using the Schwarz inequality,

we can get this property:

∑
i∈Z

φ(r1 − i)φ(r2 − i) ≤ C2, ∀(r1, r2) ∈ R2.

This inequality describes the fact that, ”the interaction of one fiber point with another

[is] bounded by the interaction of a fiber point with itself.” However, oscillations

introduced if condition (vi) is not satisfied, have a short wave length, in the same

order of length as the space step. These kinds of oscillations already exist, as a by-

product of the elasticity property of the immersed boundary and the poor quality

of the pressure equation solution around the interface. These oscillations are what

make the method fairly unstable, even if we use a discrete Dirac delta function that

satisfies property (vi).
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In order to avoid the small oscillations along the immersed boundary, we implemented

a filtering technique that allows us to significantly increase the stability of the method,

in stiff cases. It also allows us to eliminate condition (vi), while using a staggered

mesh allows us to eliminate condition (v). This will be detailed in this chapter.

The minimal support of a function that would satisfy the conditions (i, ii, iii, iv, v, vi)

is 4h. It is then uniquely defined:

φ1(r) =




1
8

(
3− 2|r|+√

1 + 4|r| − 4r2
)

, 0 ≤ |r| ≤ 1;

1
8

(
5− 2|r| −√−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2;

0, otherwise.

(4.4)

This function is well approached by this cosine function (see Figure 4.1), which is

most commonly used:

φ2(r) =




1
4

(
1 + cos(πr

2
)
)
, |r| ≤ 2;

0, otherwise.
(4.5)
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Figure 4.1: Relative error between φ1 and φ2.

Now for the staggered meshes, the minimal support of a function that would satisfy

the conditions (i, ii, iii, iv, vi) is 3h. It is uniquely defined also [97]:
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φ3(r) =




1
6

(
5− 3|r| −√−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5;

1
3

(
1 +
√−3r2 + 1

)
, |r| ≤ 0.5;

0, otherwise.

(4.6)

Let us present the piecewise cubic discrete Dirac delta function, as introduced in

[111], that has a 4h support:

φ4(r) =




1− 1
2
|r| − |r|2 + 1

2
|r|3, 0 ≤ |r| ≤ 1;

1− 11
6
|r|+ |r|2 − 1

6
|r|3, 1 < |r| ≤ 2;

0, otherwise.

(4.7)

This function satisfies the conditions (i, ii, iii, iv), as well as these extra moment

properties:

∑
i∈Z

(r − i)2φ(r − i) = 0,
∑
i∈Z

(r − i)3φ(r − i) = 0, ∀r ∈ R. (4.8)

We know that the order of the discretization error is proportional to the number of

moment conditions [111]. This will be fully explained in section (4.1.2).

The support of φ4 is not minimal for a staggered mesh, but it is important to note

that the computational cost of a the boundary treatment is of lower order than the

one of the NS computations. So, a small increase in the width of the support does

not significantly increase the cost of the method.

Since the function φ4 does not satisfy condition (vi), let us look at the shape of the

periodic function f(r) =
∑

i∈Z
[φ4(r − i)]2 of period 1 in Figure 4.3. The function

f(r) is not constant and thus some small oscillations are introduced into the IBM.

Its stability is reduced with the piecewise cubic discrete Dirac delta function but as

we will see, the accuracy of elliptic problems with singular source terms, such as the

Poisson equation, is improved. The aim is to improve the accuracy of the pressure
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Figure 4.2: φ1, φ2, φ3 and φ4.

equation in the basic projection scheme of the NS equations; however, the right-hand

side then contains dipoles and not delta functions.
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Figure 4.3: Graph of the C0 periodic function f(r) =
∑

i∈Z
[φ4(r − i)]2.

The discrete delta function (Figure 4.2) that satisfies conditions (i, ii, iii, iv, v, vi) and

the additional moment properties described in (4.8) has a 6h support [105, 44]:

68



φ5(r) =




61
112
− 11

42
|r| − 11

56
|r|2 + 1

12
|r|3+

√
3

336

√
243 + 1584|r| − 748|r|2 − 1560|r|3 + 500|r|4 + 336|r|5 − 112|r|6,

0 ≤ |r| ≤ 1;

21
16

+ 7
12
|r| − 7

8
|r|2 + 1

6
|r|3 − 3

2
φ5 (|r| − 1) , 1 ≤ |r| ≤ 2;

9
8
− 23

12
|r|+ 3

4
|r|2 − 1

12
|r|3 + 1

2
φ5 (|r| − 2) , 2 ≤ |r| ≤ 3;

0, otherwise.

(4.9)
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Figure 4.4: The discrete Dirac delta function φ5.

Let us describe the link between the moment properties of the discrete Dirac delta

function and the interpolation error.

4.1.2 On the interpolation error using the discrete Dirac

delta functions

We start with the interpolation formula:

u(X) =

∫ +∞

−∞
u(x)δ(x−X)dx. (4.10)

We use a one-dimensional case (X ∈ R is fixed) and a uniform equally spaced mesh
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{xi}, with space step h. After discretization, using the discrete Dirac delta function

dh, we have:

u(X) ≈ h
∑
i

u(xi)dh(xi −X). (4.11)

If we assume that u is smooth enough, we can use the Taylor series to get series

expressions of u(xi) around u(X):

u(xi) = u(X) +

+∞∑
n=1

1

n!

∂nu

∂xn
(X)(xi −X)n. (4.12)

By plugging (4.12) into (4.11), we get:

u(X)− h
∑
i

u(xi)dh(xi −X) = (4.13)

u(X)− h
∑
i

[
u(X) +

+∞∑
n=1

1

n!

∂nu

∂xn
(X)(xi −X)n

]
dh(xi −X)

= −
+∞∑
n=1

1

n!

∂nu

∂xn
(X)h

∑
i

(xi −X)ndh(xi −X),

using the identity:

h
∑
i

dh(xi −X) = 1.

Since the discrete Dirac delta function is of finite support:

dh(r) = 0, |r| > mh, (4.14)

where m is a small integer. So dh(xi −X) �= 0 when |xi −X| ≤ mh, which leads to:

|h
∑
i

(xi −X)ndh(xi −X)| ≤ hmnhn
∑
i

dh(xi −X) = mnhn. (4.15)

Finally, by plugging (4.15) into (4.13), we have:

|u(X)− h
∑
i

u(xi)dh(xi −X)| ≤
+∞∑
n=1

1

n!

∣∣∣∣∂nu

∂xn
(X)

∣∣∣∣mnhn = O(h). (4.16)
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If the discrete Dirac delta function satisfies some extra moment properties:

∑
i

(xi −X)ndh(xi −X) = 0, for 0 < n < p, (4.17)

then it is easy to show that the discretization error is of order p, for sufficiently smooth

functions u. We start from (4.13):

u(X)− h
∑
i

u(xi)dh(xi −X) (4.18)

= −
+∞∑
n=1

1

n!

∂nu

∂xn
(X)h

∑
i

(xi −X)ndh(xi −X)

= −
p−1∑
n=1

1

n!

∂nu

∂xn
(X)h

∑
i

(xi−X)ndh(xi−X)−
+∞∑
n=p

1

n!

∂nu

∂xn
(X)h

∑
i

(xi−X)ndh(xi−X)

= −
+∞∑
n=p

1

n!

∂nu

∂xn
(X)h

∑
i

(xi −X)ndh(xi −X),

since the moments for 1 ≤ n ≤ p− 1 are null. Finally we get:

∣∣∣∣∣u(X)− h
∑
i

u(xi)dh(xi −X)

∣∣∣∣∣ ≤
+∞∑
n=p

1

n!

∣∣∣∣∂nu

∂xn
(X)

∣∣∣∣mnhn = O(hp). (4.19)

Now that we have seen the importance of the moment properties for the discrete

Dirac delta function and the different constraints due to the IBM, we look at what

would be an ideal discrete function to regularize a singular source point in an elliptic

problem. This is done without the IBM constraints regarding the motion and the

volume conservation of the immersed boundary.
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4.1.3 The Ideal discretization of the discrete Dirac delta func-

tion.

The idea is to construct the optimal right-hand side in the Poisson problem with

singular source terms, which could be helpful in the IBM. To construct it, we apply

the Laplace operator to the exact discretized solution and shift the result.

Let us start with one singularity. If we look at the one-dimensional problem:

d2u

dx2
(x) = δ(x− x0), x ∈ [−1, 1], x(−1) = 0 and x0 ∈ (0, 1), (4.20)

the solution to this problem is:

ue(x) =


 0, x ≤ x0

x− x0, x > x0.
(4.21)

The optimal discrete right-hand side R associated with the finite difference stencil is

trivial. With N points
(
h = 2

N−1

)
and x0 = (I+ε)h (0 ≤ ε < 1), then for 1 ≤ i ≤ N :

Ri =




0, i �= I and i �= I + 1

1−ε
h

, i = I

ε
h
, i = I + 1.

(4.22)

This allows us to converge to the discretized analytic solution up to machine epsilon

precision. Now, in two dimensions, the problem is:

∆u(x) = δ(x− x0, y − y0), (x, y) ∈ Ω = [−1, 1]2, (4.23)

u∂Ω = uex ∂Ω and (x0, y0) ∈ (0, 1)2.

uex(x, y) = − 1

4π
ln
(√

(x− x0)2 + (y − y0)2
)

.
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The discretized analytic solution is not bounded if the singularity coincides with a

mesh point. So, we have this particular condition: (εx, εy) �= (0, 0), with x0 = (i0+εx)h

and y0 = (j0 + εy)h, 0 ≤ εx, εy < 1.

By applying the discrete Laplace operator to the exact solution, we get this optimal

right-hand side (Figure 4.5):

RHSi,j =




− 1
8πh2 ln ((xi+1,j − x0)

2 + (yi,j − y0)
2)

− 1
8πh2 ln ((xi,j − x0)

2 + (yi+1,j − y0)
2)

+ 1
2πh2 ln ((xi,j − x0)

2 + (yi,j − y0)
2)

− 1
8πh2 ln ((xi−1,j − x0)

2 + (yi,j − y0)
2)

− 1
8πh2 ln ((xi,j − x0)

2 + (yi−1,j − y0)
2) .

(4.24)
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Figure 4.5: log(|RHS|) with εx = εy = 0.5.

Again, this right-hand side allows us to reach an accurate, discrete solution. However,

this accuracy depends on the distance between (x0, y0) and the mesh nodes: the error

becomes relatively large, when εx = εy = 10−5 for example. In Figure 4.6, we show

the behavior of the error with respect to the distance between the singular source

point and the mesh nodes. We can see that this error is of second order with respect

to the inverse of the distance ε = ε1 = ε2. For ε values smaller than 10−6, we cannot
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compute the solution due to the ill conditioning of the right-hand side.
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Figure 4.6: Error on the solution with respect to ε ≡ ε1 = ε2.

Now we measure the error on elliptic equations with singular source terms, depending

on the different discrete Dirac delta functions used. First, we list some of the norms

used in the following section.

4.1.4 Some Discrete 2D norms

We need to take special care with the method of error measurement used due to its

lack of uniformity. Thus, we generally choose to use a set of four different discrete

norms. If the discrete error is called E: {Ei,j}1≤i,j≤N+1, we use:

‖E‖hL1
=

1

(N + 1)2

N+1∑
i=1

N+1∑
j=1

|Ei,j|,

‖E‖hL2
=

1

N + 1

[
N+1∑
i=1

N+1∑
j=1

(Ei,j)
2

] 1
2

,

‖E‖h∞ = max1≤i,j≤N+1 {Ei,j} .

In the last two test cases, the solution is symmetrical with respect to the origin, thus
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we use an additional one-dimensional norm. This is the discrete L2-norm of the error

along the x-axis Ei,N
2

+1 (N even):

|E(x, 0)|hL2
=

[
1

N + 1

N+1∑
i=1

(
Ei,N

2
+1

)2
] 1

2

The ||.||hL1
-norm is essentially an average of the discrete errors on the mesh. It is

not especially sensitive to the singularities but gives a good indication of the global

behavior of the solution. The ||.||hL2
-norm is more sensitive to the singularities because

of the square power, as well as the |.|2L2
-norm. Then, the ||.||h∞-norm is essentially

measuring the error at the singularity.

4.2 Some elliptic equations with singular source

terms

The two main test cases used to test the regularized delta functions on staggered

grids, introduced previously, are both two-dimensional Poisson equations with singu-

lar source terms distributed along a circle. An iterative S.O.R. solver has been used

for all these calculations. The accuracy of Poisson’s equation with singular source

terms is an important issue for the IBM in order to improve the accuracy of the

pressure field around the immersed boundary.

We start with more basic 1D and 2D equations on collocated grids:

� 1D Helmoltz operator with one singular source point,

� 1D Laplace operator with two singular source points,

� 2D Laplace operator with one singular source point.
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4.2.1 The 1D Helmholtz operator

Let us study the behavior of the 1D Helmholtz operator with a singular source point

in the right-hand side, as presented in [59]:

d2u

dx2
(x)− α2u(x) = −2αδ(x− x0), x ∈ [−0.5, 0.5], α ∈ R∗

+; (4.25)

x0 ∈ [−0.5, 0.5]; u(−0.5) = e−α|−0.5−x0| and u(0.5) = e−α|0.5−x0|.

The domain is divided into N equidistant intervals. The computed solution is com-

pared to the exact solution (Figure 4.7):

uex(x) = e−α|x−x0|. (4.26)

We set the parameters to: x0 = 0 and α = 60.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

Figure 4.7: Exact solution for problem (4.25) taking x0 = 0 and α = 60.

The discrete L2-norm is used to measure the error: the convergence order found is

1.45 with φ2 and 2.00 with φ4 (Figure 4.8).

The maximum error is located at the source point (Figure 4.9) and decreases expo-

nentially with respect to the distance from it, due to the type of solution (Eq.(4.26)).

Since the point loads in the IBM can be located anywhere in a cell, it is interesting

to study the behavior of the error, depending on the distance between the point load
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Figure 4.8: Relative error in L2-norm for the 1D elliptic Eq. (4.25) using φ2 or φ4.

and the nodes of the mesh. In Figure 4.10, the error is plotted as a function of d, the

minimum distance between x0 and the nodes of the mesh:

d(x0) = min
i=1,..,N+1

|(−0.5 + (i− 1)h)− x0| .

This function d spans from 0 to h
2
.

Even if φ4 always brings a more accurate solution than φ2, we can observe that they

have some extremely different behaviors as the point load moves toward the center

of the interval: the solution obtained with φ2 is improving as opposed to φ4.

Consistently setting the Dirac delta function in the middle of the space step, will give

similar orders between both delta functions. The order for the cosine function φ2 is

1.39 and 1.37 for the piecewise cubic function φ4.

4.2.2 The 1D Laplace operator

We solve the problem:

d2u

dx2
(x) = δ(x− x0) + δ(x + x0), x ∈ [−1, 1]. (4.27)
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Figure 4.9: Error of the computed solution of Eq. (4.25), using 800 intervals and φ4

(x0 = 0).

x0 ∈ (0, 1); u(−1) = u(1) = 0.

The computed solution is compared to the exact solution:

uex(x) =




x + 1, −1 ≤ x < −x0;

1− x0, −x0 ≤ x < x0;

−x + 1, x0 ≤ x ≤ 1.

(4.28)

The measured convergence orders are very similar with φ2 or φ4, which is around 1.5.

Again, we can observe in Figure 4.11 that the accuracy of the solution changes with

respect to the distance between the point load and the mesh nodes: as this distance

increases, the accuracy decreases with φ4 and improves with φ2.

It is interesting to note that when using the piecewise cubic function φ4 and locating

the point loads at some nodes of the mesh, we converge to the exact solution for every

size space step, which is not the case for φ2. This is due to the piecewise linearity of

the solution and the fact that φ(−1) = φ(+1) = 0 for the piecewise cubic function.
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Figure 4.10: Relative error with respect to d(x0), using φ2 or φ4; N = 800.

4.2.3 The 2D Laplace operator with a single point load

In order to study the 2D Poisson’s equation with a single point load in the right-hand

side, let us recall the two-dimensional Dirac delta function. This is the product of

the Delta functions corresponding to each direction:

δ(x, y) = δ(x)δ(y) (4.29)

We solve the problem:

−∆u(x, y) = δ(x− x0, y − y0), (x, y) ∈ Ω = [0, 1]2; (4.30)

(x0, y0) ∈ Ω− ∂Ω, u|∂Ω = uex|∂Ω

This time, the exact solution is unbounded (Figure 4.12):

uex(x, y) =
1

2π
ln
(√

(x− x0)2 + (y − y0)2
)

. (4.31)

If the singularity is located at a mesh node, the discrete solution is not bounded

and we cannot evaluate the accuracy of the computed solution by taking the discrete

L2-norm of the error over the whole domain. One possibility is taking the L2-norm
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Figure 4.11: Relative error of the computed solution for problem (4.27) with x0 = 0.3

with φ2 or φ4.

of the error over Ω/A, where A is a circle centered at the singularity location with a

small fixed radius.

When the point load is located at a mesh node, we get a convergence order of one

(Figure 4.13) with three different discrete Dirac delta functions used: φ2, φ3 and

φ4. However, in this unbounded problem, the best result is obtained with the 1.5h

support function φ3. Now if we place the point load between the mesh nodes, the use

of φ4 does improve the accuracy of the solution (Figure 4.14).

The next two test cases bring us closer to the IBM. First, we present the connection

between elliptic equations with singular source terms and the IBM.

4.2.4 On The pressure equation in the IBM

If we use the explicit projection scheme for the NS equations, the pressure equation

in a closed box is:

∆P n+1 =
ρ

∆t
∇.V ∗ in Ω,

∂P n+1

∂η
= 0 on ∂Ω. (4.32)

The vector η is the outward normal vector to ∂Ω, the outside boundary of the domain.
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Figure 4.12: Exact solution of problem (4.30), with (x0, y0) = (0.5, 0.5).
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Figure 4.13: Error over Ω/A, point

load located at a mesh node.
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Figure 4.14: Error over Ω, point load

not located at a mesh node.

We have, from the prediction step of the scheme;

V ∗ = V n + ∆t

[
−(V n.∇)V n +

1

ρ
(µ∆V n + F n)

]
. (4.33)

So: V ∗ = Φ(V n) + ∆t
ρ
F n, where Φ(V n) is a smooth regular vector function and F n,

the force term, is a singular vector field. We focus on the problem:

∆P = ∇.F in Ω,
∂P

∂η
= 0 on ∂Ω, (4.34)

with F = [F1, F2]
T . Here, we describe the two-dimensional case for simplicity.
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The error in the IBM is essentially introduced by this singularity in the right-hand

side. Firstly, the force term is regularized and thus, the error is already smeared along

Γ in the right-hand side. Then, this error is smeared again by the discrete divergence

and inverse Laplace operators:

P = ∆−1(∇.F ). (4.35)

What should be a jump in the solution, is a slope whose relatively small gradient is a

bottleneck to the accuracy if the IBM. This is why it is important to have a solution

that is as close as possible to the theoretical jump. In [66], we find a good analysis

of this jump. If we call n(s) and t(s) the unit normal and tangential vectors to the

immersed boundary, we can split the force density of the IBM into a normal and a

tangential component:

f(s) = fn(s) + ft(s), (4.36)

with fn(s) = f(s).n and ft(s) = f(s).t.

If [[.]] denotes the jump across the boundary, then:

[[p]] (s) = fn(s), (4.37)

[[
∂p
∂n

]]
(s) =

∂

∂s
ft(s),

[[u]] (s) = 0,

µ
[[
∂u
∂n

]]
(s) = −ft(s)t(s)

The immersed interface method (IIM) of R. Leveque and J.Lee [67] incorporates these

jump conditions into the pressure solver in order to eliminate the discrete Dirac delta

functions. However, this implies the splitting of the force term and a infinitely thin

immersed boundary. We do not want to explicitly use these jump conditions in the
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pressure solver but rather, use a general method for solving elliptic equations with

singular source terms.

The first issue addresses how well we can solve Poisson’s equation with a collection

of Dirac delta functions distributed along a closed curve Γ:

∆P = F (x1, x2)δ(x1, x2,Γ), (x1, x2) ∈ Ω. (4.38)

This is test case 1, taking F (x1, x2) = 1 and homogeneous Dirichlet boundary condi-

tions.

The second issue is then how to solve Poisson’s equation with the divergence of test

case 1’s right-hand side, that is, dealing with a collection of dipoles along a closed

curve:

∆P = ∇. (F (x1, x2)δ(x1, x2,Γ)) , (x1, x2) ∈ Ω. (4.39)

This relates to test case 2, taking F (x1, x2) = 2[x1, x2]
T and homogeneous Dirichlet

conditions.

Now we show that test case 1 and test case 2 are closely related. In the IBM,

f = [f1, f2]
T corresponds to the elastic force density along the immersed boundary Γ.

We have:

F (x1, x2) =

∫
Γ

f(s)δ (x1 −X1(s)) δ (x2 −X2(s)) ds, (4.40)

and:

∇.F (x1, x2) =

∫
Γ

(
f1(s)

x1 −X1(s)
+

f2(s)

x2 −X2(s)

)
δ (x1 −X1(s)) δ (x2 −X2(s)) ds.

(4.41)
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But solving ∆P = F is equivalent to solving ∆P = ∇.F , due to commutativity of

the discrete divergence and Laplace operators:

∇h.∆h = ∆h∇h.

So the problem:

∆P = ∇.F

is equivalent to:




∆Q1 = F1,

∆Q2 = F2

P = ∇.Q,

(4.42)

with Q = [Q1, Q2]
T and corresponding boundary conditions. Thus, the problem of

Poisson’s equation with the divergence of shifted Dirac delta functions in the right-

hand side (4.34), studied with test case 2, is similar to the problem of the Poisson

equation with shifted Dirac delta functions in the right-hand side (4.42), studied with

test case 1.

4.2.5 Test case 1

The first test case is as seen in [111]:

−∆u(x, y) = δ(x, y,Γ), (x, y) ∈ Ω = [−1, 1]2; (4.43)

Γ =
{
(x, y) ∈ Ω/x2 + y2 = r2

}
, r < 1, u|∂Ω = uex|∂Ω

uex(x, y) =




1− 1
2
ln
(

1
r

√
x2 + y2

)
, if x2 + y2 > r2;

1, if x2 + y2 ≤ r2.
(4.44)

We fix the parameter r to be equal to 1
2
. A discrete collection of M Dirac delta

functions along the line Γ is used. M needs to be a large number: if h is the space
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Figure 4.15: Exact solution uex for problem (4.43), taking a radius r of 0.5.

step and hΓ the curvilinear distance between the delta functions along Γ, we take M

such that hΓ < 1
2
h [89]. Here is the discrete expression of δh(x, y,Γ):

δh(x, y,Γ) =
π

M

M∑
i=1

δh

(
x− 1

2
cos

(
2(i− 1)π

M

)
, y − 1

2
sin

(
2(i− 1)π

M

))
(4.45)

=
π

M

M∑
i=1

δh

(
x− 1

2
cos

(
2(i− 1)π

M

))
δh

(
y − 1

2
sin

(
2(i− 1)π

M

))
.

The error of the computed solution is located along Γ (Figure 4.16 and Figure 4.17)

and we can notice in Figure 4.18 and Figure 4.19 how different the shape of the error

is depending on which delta function is used.

This error is strongly dependent on the distance between Γ and the Cartesian mesh

nodes.

We can see that with the three two-dimensional norms the convergence order is similar

using the four different discrete delta functions: around 2 with the L1-norm, 1.5

with the L2-norm and 1 with the ∞-norm (see Table 4.1). In Figure 4.24, we plot

the contour of the space-dependent asymptotic order α of the solution: it is nearly

everywhere around 2, except in the neighborhood of Γ where it drops to reach 1

exactly. To compute the asymptotic order, we interpolate the solutions obtained
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Figure 4.16: Error of the computed solution for problem (4.43); N = 64, φ2.

with different space steps hk (k = 1, 2), on a finer 192× 192 grid and then combine

them, using the formula:

uhk
i,j = uex

i,j + ci,jh
αi,j

k + o
(
h
αi,j

k

)
, k = 1, 2, (4.46)

where uex is the exact solution and ci,j a constant. We can see in Figure 4.24 that

at some points, the order blows up because the computed solution crosses the exact

solution. This happens along Γ on both sides and along four ”petal” shaped lines.

delta function ‖.‖hL1
‖.‖hL2

‖.‖h∞ |.|hL2

φ1 1.96 1.51 1.00 1.51

φ3 1.88 1.45 0.92 2.01

φ4 1.98 1.54 0.98 1.51

φ5 1.97 1.53 1.02 1.50

Table 4.1: Convergence order of the solution of problem (4.43) using φ1, φ3, φ4, φ5

and in four different norms.
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Figure 4.17: Detail of the contour of the error and location of the delta functions (+),

φ1.

4.2.6 Test case 2

The second test case is:

−∆u(x, y) = ∇.F (x, y), (x, y) ∈ Ω = [−1, 1]2, u|∂Ω = 0, (4.47)

F = [F1, F2]
T , Fi(x, y) =

∫
Γ

fi(s)δ(x, y,Γ)ds, i = 1, 2,

[f1(s), f2(s)] = 2[x(s), y(s)], s ∈ Γ, Γ =

{
(x, y) ∈ Ω/x2 + y2 =

1

4

}
.

The exact solution has a ”hat” shape (Figure 4.25):

uex(x, y) =


 1, if x2 + y2 ≤ 1

4

0, if x2 + y2 > 1
4

(4.48)

Again, this test case is relevant because the right-hand side corresponds to the typical

irregular part of an IBM right-hand side in the pressure correction step of the NS basic

projection scheme. The results of this test case clearly show why the IBM is first order

accurate around the immersed boundary. Poisson’s equation, with the divergence of
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Figure 4.18: Error along the x-axis for

problem (4.43); N = 128, φ2.
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Figure 4.19: Error along the x-axis for

problem (4.43); N = 128, φ4.

singular source points along a curve, is the main issue for the accuracy of the method.

As we did for the test case 1, we measure the error using the different discrete norms

and discrete Dirac delta functions. Similarly as for test case 1, the shape of the error

depends on the function used.

delta function ‖.‖hL1
‖.‖hL2

‖.‖h∞ |.|hL2

φ1 0.99 0.51 -0.01 0.47

φ3 1.00 0.52 -0.01 0.48

φ4 1.03 0.54 -0.02 0.48

φ5 0.60 0.50 -0.00 0.44

Table 4.2: Convergence order for the solution of problem (4.47) using φ1, φ3, φ4, φ5

and in four different norms.

We can see in Table 4.2 that the orders are smaller than with the previous test case.

This is particularly true with φ5, because of its large support: the discrete divergence

operator smears the error at the singularity. This shows the difficulty of solving

equations with dipole singularities.

After looking at the discretization of the Dirac delta function in order to improve the
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error for φ1, φ3, φ4 and φ5.

10
−1.9

10
−1.7

10
−1.5

10
−1.3

10
−6

10
−5

10
−4

10
−3

10
−2

h

phi1
phi4
phi3
phi5

Figure 4.23: |.|hL2
norm of the solution

error for φ1, φ3, φ4 and φ5.

accuracy of the solution of elliptic equations with singular source terms, we implement

the IBM with the piecewise cubic Dirac delta function.

4.3 The IBM case

4.3.1 The Piecewise cubic Dirac delta function

We implement the IBM with a staggered mesh in the 2D ”bubble” test case using

the piecewise cubic discrete Dirac delta function φ4.
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Figure 4.24: Contour of the convergence order of the computed solution of problem

(4.43) using φ1.

To evaluate the accuracy of the method, we study the horizontal diameter of the

bubble with respect to time (Figure 4.29). We can then compare the different diam-

eters obtained with different discrete Dirac delta functions. The reference solution is

a diameter, function of time, obtained with a very small space step.

First, we checked that the method using φ4 converges to the same solution as the

one uobtaines with φ2: we compute the ”bubble” test case with both delta functions,

φ4 or φ2, a very small time step ∆t = 10−5, σ = 104 and evaluate the relative error

between the diameters of the bubble in both cases over hundred time steps.

We can observe in Figure 4.30 that they converge to the same solution. The order of

convergence of the relative error between both solutions, obtained with φ2 or φ4, is

one.

The next question involves knowing if the piecewise delta function improves the ac-

curacy of the IBM. We computed the ”bubble” test case with different space steps

and a small constant time step ∆t = 10−5 and compared with a reference solution

obtained with the same time step and the space step h = 1
96
.

We can clearly see in Figure 4.31 the improvement of the piecewise cubic delta function
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in this case. The method using the usual cosine delta function is of order one while

the other is of order two. We can take a relatively larger space step with the piecewise

cubic function than with the cosine one in order to get the same level of error on the

solution. For example, with N = 32, ∆t = 10−5 and T = 0.01, we can use h = 0.06

with the piecewise cubic function instead of h = 0.03 with the cosine one, in order to

get a 2% error on the diameter.

Figure 4.32 shows the convergence of the test case using φ4 measured with two dif-

ferent norms. The results are not very clear when h is very small due to the fact that
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Figure 4.29: Example of the horizontal diameter of the bubble with respect to time.

we do not compare to an exact solution but a solution obtained with a very small

space step. We compute the slope of the lines in the graph above when h is not too

small and then get the second order of convergence.

If the piecewise cubic delta function improves the accuracy of the solution, at least on

a short time range, its behavior regarding the stability and the volume conservation

must be studied. The stability results will be presented in the next chapter, while we

focus now on the conservative issues.
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φ2 and φ4, over hundred time steps with ∆t = 10−5, σ = 104); solid line: L2-norm,

dotted line: ∞-norm.

4.3.2 Conservative issues

4.3.2.1 Volume variations

In the process of evaluating the accuracy of the IBM, we do not compare the evolution

of the moving boundary on a very long time range. The final time is: T = 0.01. If

we measure the diameter of the bubble after the equilibrium is reached, we can study

the property of volume conservation of the immersed boundary. Let us compare the

behaviors of the bubble from t = 0.04 to t = 0.06, with N = 32, M = 6N , σ = 104,

∆t = 510−5, and for the different delta functions: cosine φ2, piecewise cubic φ4 and

double-layer piecewise cubic (Figure 4.35).

The idea of the double-layer ”bubble” test case (Figure 4.33) that still models the

case of an immersed boundary with no thickness, is to have two layers of elastic

boundary separated by a very small distance hΓ = 1
M
, which is the discretization step

along the immersed boundary (the single layer boundary has a width of zero which

is not physically realistic). The double-layer does not change the solution when the

immersed boundary is moving (Figure 4.34).
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φ4 (dotted line).
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Figure 4.32: Relative error in the di-

ameter using φ4; L2-norm (solid line),

∞-norm (dotted line).

Figure 4.35 shows a large difference in behavior between the different cases. The

piecewise cubic function φ4 is less conservative than the traditional cosine function

φ2, while the double-layer IBM has a better conservation of volume property.

In order to study the improvement, volume-wise, in the double-layer IBM, we com-

pared the single-layer with the double-layer ”bubble” test case for the two different

delta functions: φ2 in Figure 4.36 and φ4 in Figure 4.37. The test cases are run from

time iteration 500 to 2000, with N = 32, M = 6N , σ = 104, ∆t = 5.10−5.

We can conclude from these graphs that the use of the piecewise cubic delta function

alters the conservation of volume property, compared to the cosine delta function.

The double layer IBM has a better behavior than both other cases. It requires twice

as many computations for the boundary treatment, although this treatment is very

light, compared to the flow computations. The order of the method using this double

layer φ4 is 2.46 (Figure 4.38). Again, the error is computed with respect to the

solution obtained with a very fine grid and not an exact solution.

Now we present a method that fixes the conservation issue in the case of a 2D im-

mersed boundary. The method could be extended to 3D, for example for a flow in an
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Figure 4.34: Diameter of the bubble

with respect to time with single-layer

φ2 ”bubble” or the double-layer φ4 one.

elastic channel: it only requires a defined volume with an uniform distribution of the

discrete points along the immersed boundary at rest, because of the use of Fourier

expansions.

4.3.2.2 A 2D area conservation method based on constrained optimiza-

tion.

This method is based on a Fourier expression of the position vector of the immersed

boundary. Therefore, it is well suited for the 2D ”bubble” test-case, since the position

vector is periodic and the volume inside the ”bubble” is constant.

The reason we can express the moving boundary position vector into a Fourier ex-

pansion, even if the points are not equally spaced, is that the transformation of the

equally spaced points of the equilibrium position is a smooth continuous transforma-

tion. This is due to the no-slip boundary condition: the moving boundary points move

at the same speed as the particles of fluid surrounding them and the fluid velocity

field is smooth and continuous.
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Figure 4.35: Diameter of the bubble from t = 0.04 to t = 0.06, for the different delta

functions: φ2, φ4 and double-layer piecewise cubic.

Let us call X(s), 0 ≤ s < 1, the position vector of the moving elastic boundary.

Because of the discretization, we deal with the set:

{Xi}0≤i≤M−1 = {X1,i, X2,i}0≤i≤M−1. (4.49)

{X1,i}0≤i≤M−1 is the vector of the horizontal components of the moving points and

{X1,i}0≤i≤M−1 is the vector of their vertical components. We assume that M is even

and then take K = M
2
. The Fourier coefficients are:

{αk}0≤k≤K = {α1,k, α2,k}0≤k≤K,

with: αj,k = {αA
j,k, α

B
j,k}, 0 ≤ k ≤ K, j = 1, 2.

For 0 ≤ k ≤ K, we have:

αA
j,k =

M−1∑
i=0

Xj,icos

(
2πk

i

M

)
, j = 1, 2.

For 1 ≤ k ≤ K − 1, we have:
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Figure 4.37: Diameter of the bubble

with φ4: single and double-layer.

αB
j,k =

M−1∑
i=0

Xj,isin

(
2πk

i

M

)
, j = 1, 2.

αB
j,0 = αB

j,K = 0, j = 1, 2.

Then the Fourier expansion of X is, for j = 1, 2 and 0 ≤ i ≤M − 1:

X̂j,i(α) =
1

M

[
αA
j,0 + 2

K−1∑
k=1

(
αA
j,kcos

(
2πk

i

M

)
+ αB

j,ksin

(
2πk

i

M

))
+ αA

j,K(−1)i
]

It is easy to compute the analytic area of the ”bubble” from the Fourier modes with

a basic curvilinear integration, we get:

Area(α) =
4π

M2

K−1∑
k=1

k
(
αA

1,kα
B
2,k − αA

2,kα
B
1,k

)
If the area was initially V0, we want to have the function S(α) to be null:

S(α) = Area(α)− V0 = 0.

Since we want a change of the position vector that is as small as possible, we try to

do the least square minimization of the position change, constrained with the area

preservation. The function to minimize is:
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Figure 4.38: Error of the diameter of the double-layer ”bubble” over a time range,

compared to the results obtained with N = 120.

F (α) = ‖ {Xi − X̂i(α)}0≤i≤M−1‖22

The functions F (α) and S(α) are easy to compute as well as ∇F (α), HF (the Hessian

of F (α), which does not depend on α), ∇S(α).

To summarize the problem, we want to do this minimization:

minαF (α), such that S(α) = 0, using ∇F (α), HF and ∇S(α),

starting with the initial value α0 = α(X).

In the ”bubble” test-case, this minimization is done using the MATLAB function

fmincon at the end of each time step, after the position update. It is a relatively fast

process.

At the same time, it is easy to filter the high wave frequencies of the position vector

by imposing αk = 0 for k > Kf (Kf < K) or by multiplying it by a function that

decreases sharply from one to zero around a certain wave length number. These high
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wave frequency oscillations are created mainly by the stiff elastic force term. Thanks

to the Fourier filter, the maximum time step can be increased by a factor 3 or 4 in

a stiff case (an elastic coefficient σ = 10000) of the ”bubble” test-case. However, the

Fourier filter by itself (without imposing the volume conservation) alters the volume

property of the IBM.

Now we study an extrapolation technique, the Multigrid/τ -extrapolation, with the

same motivation.

4.4 The Multigrid/τ-extrapolation

The τ–extrapolation [7, 63] is a modified multigrid method that improves the con-

vergence order of a discrete problem. It is based on the Richardson extrapolation

technique. It combines two solutions obtained on different grids in order to correct

the fine grid solution but requires knowledge of the order of the first asymptotic

expansion term, which can be evaluated experimentally. This study is made on a

collocated grid.

4.4.1 The Richardson extrapolation technique

Let us assume we know the asymptotic convergence order α of the discrete solution

on a uniform mesh:

uH = u∗ + cHα + o(Hα), (4.50)

where u∗ is the exact solution and uH the solution obtained with a space step H .

Now we take a solution obtained with a smaller space step h = H
2
, we have:

uh = u∗ + chα + o(hα). (4.51)
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Eq. (4.50) can be written:

uH = u∗ + 2αchα + o(hα). (4.52)

If we combine Eq.(4.51) and Eq.(4.52), we can get rid of the hα term and get:

2α

2α − 1
uh −

(
1− 2α

2α − 1

)
uH = u∗ + o(hα). (4.53)

The order of the discrete solution has been improved. Again, it is important to note

that this method requires to know the asymptotic order α.

4.4.2 The Algorithm

This part needs to be clarified

Here is the τ–extrapolation multigrid algorithm for the problem Au = f :

� 1 - pre-smoothing step : uh = Sν1(Ah, uh, fh).

� 2 - uh = uh + IhHA−1
H

((
2α

2α−1

)
ÎHh (fh −Ahuh) +

(
1− 2α

2α−1

)
(fH − AHIHh uh)

)
.

� 3 - post-smoothing step : uh = Sν2(Ah, uh, fh).

with these characteristics in most cases:

- IhH is a trilinear interpolation prolongation operator.

- ÎHh is a full weighting restriction operator.

- IHh is a full injection prolongation operator.

- (ν1, ν2), the number of smoothing steps per iteration, is small (≤ 2).

The efficient convergence property of the multigrid methods is due to the fact that

the smoothing iterations improve the high frequency modes of the discrete solution,

while the coarse grid correction improves its low frequency modes. This is especially

true for the stiff elliptic problems solved in the IBM.

100



In the τ–extrapolation technique, the Richardson extrapolation linear combination

significantly improves the discretization order of the coarse grid correction. This is

the idea of the double discretization. A high order discretization scheme is used on the

coarse grid, different from the scheme used for calculating the residuals transferred

to the coarse grid. The smoothing process uses the low order discretization scheme

too, which implies that two discrete problems with slightly different fixed points are

solved. The τ–extrapolation is a special case of the double discretization method

where we use the Richardson extrapolation technique to change the discretization

order of the coarse grid. The analytic solution needs to be smooth enough, and the

restrictions operator needs to be chosen carefully enough, for the τ–extrapolation to

improve the regular multigrid method.

A specificity of the τ–extrapolation applied to problems with singular source points

is that we use fH instead of ÎHh fh at the coarse grid correction step. fH is the

discretization of the right-hand side using the discrete Dirac delta functions that

have a 2H = 4h support, while fh is evaluated using the same kind of delta function

but with a 2h support. This is easy to implement and saves an interpolation process

per multigrid iteration.

4.4.3 Numerical results

4.4.3.1 The 1D Helmholtz operator

We measure the error of the solution of the Helmoltz problem seen in sec. 4.2.1 by

using or not the extrapolation technique. We can see in Figure 4.39 that the order is

improved from 2.0 to 3.4 in this case, using the L2-norm.

Then, we count the number of operations: it represents the number of times the

values at the nodes are updated, but does not take into account the extrapolation

and interpolation operations made in the multigrid algorithms in order to switch
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spect to the number of operations with

the 4 solvers S.O.R., Multigrid V2,

Multigrid/τ -ex. and Gauss-Seidel.

N = 1000, x0 = 0 and we use φ4.

from one grid to another. The multigrid algorithm implemented here is a classic V-

shaped algorithm with two levels. We see in Figure 4.40 that with the τ -extrapolation

technique, we benefit at the same time from a fast convergence and an improved

accuracy.

4.4.3.2 Test case 1

The τ -extrapolation does not improve the convergence order in test case 1 except

with the 1D |.|hL2
norm: we get 2.0 without the τ -extrapolation and 2.8 with (Figure

4.44).

Again we can observe in Figure 4.45 that with the τ -extrapolation technique, we

benefit at the same time from fast convergence and improved accuracy. However,

this extrapolation technique improves the solution only at a certain distance from

Γ, where the asymptotic order is two and not one. Basically, the technique narrows

down the neighborhood of Γ that has a large error.
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-norm of the error.
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Figure 4.42: ‖.‖hL2
-norm of the error.
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Figure 4.43: ‖.‖h∞-norm of the error.
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Figure 4.44: Horizontal |.|hL2
-norm of

the error.

This technique does not improve the solution for test case 2 (sec. 4.2.6) since the

error is then, essentially concentrated around Γ and null elsewhere, the asymptotic

order cannot be known. This is for this same reason that the τ -extrapolation pressure

solver does not significantly improve the IBM: the bottleneck of the method for the

accuracy is the large error and the first degree convergence order along the immersed

boundary Γ.

We have shown that one can improve the accuracy of the elliptic equations by using

a Dirac delta function with small support and more moment conditions as well as by

using some extrapolation techniques associated with fast solvers.
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4.5 A Non-centered stencil for the divergence op-

erator around the singularity

The aim is to achieve better accuracy on test case 2 and then on the pressure equation

of the IBM:

∆P = ∇.F,

where F = [F1, F2]
T contains a singularity distributed along a curve.

The idea of this technique is to use a non-centered stencil for the divergence operator

around the singularity, where the error is concentrated. This implies knowing explic-

itly where the singularity is. In this case, we assume that the singularity is distributed

along a closed curve Γ. If Ωi and Ωo are respectively the domain inside and outside

Γ, xi,j the coordinates of the mesh nodes, we use a discrete mask function Mi,j such

that:

Mi,j = 1 if xi,j ∈ Ωi,

Mi,j = 0 if xi,j ∈ Ωo.
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This modified divergence operator ∇̃ is applied to the vector field Q = [Q1, Q2]
T ,

solution of:

∆Q1 = F1,

∆Q2 = F2.

with appropriate boundary conditions, in order to get P :

P = ∇̃.Q.

This allows us to improve the solution around Γ. This method can be used on

staggered or collocated meshes.

4.5.1 The Discrete non-centered divergence operator

Away from Γ, the discrete divergence operator stencil is the traditional second order

stencil. Now, we have to define what should be the width of the neighborhood around

Γ in which we apply the non-centered stencil. If we call NΓ this neighborhood, this

means that we never use the points of the mesh that belongs to NΓ. The further away

the points we use are from the singularity, the larger the error of the extrapolation

is. Since Γ can have a large curvature, we cannot use points that are too far away

from the singularity or we might get close to another part of Γ. We decided to change

the stencil only within the distance of nh from the singularity, where h is the space

step. This approach has a drawback: if we decrease h, the width of NΓ decreases too

and the error introduced by the singularity might not be contained by NΓ anymore.

Recall that this error decreases exponentially with respect to the distance from Γ.

This means that it is necessary to increase n, which means changing the non-centered

divergence stencil, when h decreases significantly. Let us describe the case where

n = 2; the distance is then 2h, on a collocated mesh.
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The divergence is computed in a double loop, spanning all the points xi,j of the mesh:

1 ≤ i, j ≤ N +1. For each mesh point, we assign, at first, a value based on the classic

divergence stencil:

[∇.Q]i,j =
1

2h
(Q1,i+1,j −Q1,i−1,j) +

1

2h
(Q2,i,j+1 −Q2,i,j−1)

Then, we use the non-centered for the points inside NΓ. In order to use the points

that are far away from Γ, we need to know where Γ is, using the mask function Mi,j .

Now we present briefly the extrapolation process that we used, although this needs to

be studied more. In the implemented technique, we have eight possible cases for the

orientation of the divergence stencil in 2D. We would have fourteen cases in 3D. In

2D, the eight possible locations for Γ with respect to the mesh point xi,j are: North,

South, East, West, North-East, North-West, South-East, South-West. The criteria

on the mask function, to know the location of Γ, are described in Table 4.3.

N Mi,j+2 �= Mi,j Mi+2,j−1 = Mi,j Mi−2,j−1 = Mi,j

S Mi,j−2 �= Mi,j Mi+2,j+1 = Mi,j Mi−2,j+1 = Mi,j

E Mi+2,j �= Mi,j Mi−1,j+2 = Mi,j Mi−1,j−2 = Mi,j

W Mi−2,j �= Mi,j Mi+1,j+2 = Mi,j Mi+1,j−2 = Mi,j

N-E Mi+2,j+2 �= Mi,j Mi−2,j+1 = Mi,j Mi+1,j−2 = Mi,j

N-W Mi−2,j+2 �= Mi,j Mi−1,j−2 = Mi,j Mi+2,j+1 = Mi,j

S-E Mi+2,j−2 �= Mi,j Mi−2,j−1 = Mi,j Mi+1,j+2 = Mi,j

S-W Mi−2,j−2 �= Mi,j Mi−1,j+2 = Mi,j Mi+2,j−1 = Mi,j

Table 4.3: Check conditions on the mask function Mi,j to find the location of Γ with

respect to the mesh node xi,j.

In Figure 4.46, the case where Γ is located at the East of xi,j is represented, while in

Figure 4.47, the case where Γ is located at the North-East is shown.
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Figure 4.46: Stencil for the East loca-

tion of Γ’s check.

Figure 4.47: Stencil for the North-East

location of Γ’s check.

It is important to start by checking the four first directions: N,S,E,W, before the four

other ones: N-E,N-W,S-E,S-W. This method is easy to code, fast and allows us to

get a good discrete representation of NΓ. In Figure 4.48, we can see an example of

how NΓ has been detected: we see the mesh, the contour of NΓ and the contour of Γ

in the middle of NΓ. We can see that the points inside NΓ are within a distance of

2h from Γ.
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Figure 4.48: Graph of the mesh, contours of NΓ and the mask Mi,j (in the middle).

For each of the points inside NΓ, we compute the divergence using a non-centered

stencil. We use a simple extrapolation technique based on Taylor expansions using

the values of the vector field outside of NΓ. The points used are on the West if Γ
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is on the East of xi,j , on the South-West, if Γ is on the North-East and so on. We

use basic basic third order non-centered approximations of the divergence, from the

Taylor expansions.

Let us apply the technique on test case 2.

4.5.2 Test case 2

At first we solve the problems:

∆Q1 = F1 in Ω = [−1, 1]2, (4.54)

∆Q2 = F2 in Ω = [−1, 1]2,

with:

Fi(x1, x2) =

∫
Γ

2xi(s)δ(x1, x2,Γ)ds, i = 1, 2.

Γ =

{
(x1, x2)/x

2
1 + x2

2 =
1

4

}
.

Since we want to have homogeneous Dirichlet boundary conditions on the divergence

of Q = [Q1, Q2]
T , we need to take these boundary conditions on Q1 and Q2:

∂Q1

∂x1
(−1, x2) =

∂Q1

∂x1
(+1, x2) = 0,

Q1(x1,−1) = Q1(x1,+1) = 0,

∂Q2

∂x2

(x1,−1) =
∂Q2

∂x2

(x1,+1) = 0,

Q2(−1, x2) = Q2(+1, x2) = 0.

We can see in Figures 4.49 and 4.50 the results Q1 and Q2 of these two related

problems. We use φ4.

Now, we just have to compute the divergence of Q using the modified divergence

operator that we just described: P = ∇̃.Q. We can see in Figure 4.51 the improvement

of this extrapolation technique. While the jump of the solution computed with the
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Figure 4.49: Q1.
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Figure 4.50: Q2.

regular divergence operator applied to the right-hand side at first, is smeared around

Γ, the solution computed with the a posteriori modified divergence operator has a

jump close to the theoretical one.
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Figure 4.51: Solution P around the jump, with (+) or without (*) the correction,

compared to the exact solution (o).

Let us present the results on the convergence properties of the method for test case

2 in Figures 4.52, 4.53, 4.54 and 4.55.

The order changes when h becomes small. As we explained above, this is due to the

fact that the width of NΓ is proportional to h. When h decreases significantly, the
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Figure 4.52: ‖.‖hL1
-norm of the er-

ror. solid line: non-centered diver-

gence stencil. dotted line: basic diver-

gence stencil.
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Figure 4.53: ‖.‖hL2
-norm of the er-

ror. solid line: non-centered diver-

gence stencil. dotted line: basic diver-

gence stencil.

error along Γ is no longer contained in NΓ and thus, propagates to the non-centered

divergence stencil. We measure the order when h is not too small and get a uniform

second-order accuracy, as we can see in Table 4.4.

norm ‖.‖hL1
‖.‖hL2

‖.‖h∞ |.|hL2

without corr. 0.97 0.45 0.01 0.51

with corr. 2.06 2.42 2.15 2.59

Table 4.4: Convergence order for the solution of test case 2 using φ4 and the non-

centered divergence operator correction technique.

4.5.3 The pressure equation

We apply the same method to the pressure equation of the IBM, using a typical right-

end side from the ”bubble” test case corresponding to a stiff force term interpolated

with φ4. The aim is to solve the pressure equation, with no error introduced near

the jump by the discrete Dirac delta function , thanks to the non-centered stencil.
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Figure 4.54: ‖.‖h∞-norm of the er-

ror. solid line: non-centered diver-

gence stencil. dotted line: basic diver-

gence stencil.
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Figure 4.55: |.|hL2
-norm of the error

along the x-axis. solid line: non-

centered divergence stencil. dotted

line: basic divergence stencil.

L. Lee and R. J. Leveque wrote in [67]: ”The entire force is spread to the grid,

giving discrete delta function behavior in the intermediate velocity V ∗. Applying the

discrete divergence to this leads to discrete dipole behavior in ∇.V ∗, and using this as

the right hand side in the Poisson problem leads to a smeared jump in the numerical

approximation to the pressure.[...] We believe that this discrete dipole in V ∗ and its

use in the Poisson problem are the principal causes of inaccuracy in the immersed

boundary method [...].”

Since we want the pressure to have homogeneous Neumann boundary conditions, we

need to solve:

∆Q1 = F1 in Ω = [0, 1]2,

∆Q2 = F2 in Ω = [0, 1]2,

with these boundary conditions:

∂2Q1

∂x2
1

(0, x2) =
∂2Q1

∂x2
1

(1, x2) = 0,

∂Q1

∂x2
(x1, 0) =

∂Q1

∂x2
(x1, 1) = 0,
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∂2Q2

∂x2
2

(x1, 0) =
∂2Q2

∂x2
2

(x1, 1) = 0,

∂Q2

∂x2

(0, x2) =
∂Q2

∂x2

(1, x2) = 0.

We can see an example of Q1, Q2, P evaluated with or without the non-centered

divergence stencil respectively in Figures 4.56, 4.57, 4.58 and 4.59.
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Figure 4.56: Q1.
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Figure 4.57: Q2.
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Figure 4.58: Pressure field in the ”bub-

ble” test case using the non-centered

divergence stencil and φ4.
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Figure 4.59: Pressure field in the

”bubble” test case using the classical

method and φ2.

In this chapter, we have shown that the piecewise cubic discrete Dirac delta function

φ4 [111], associated with the staggered mesh, gives good results in the IBM regarding
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accuracy. We first studied its behavior solving elliptic equations with singular source

terms on collocated grids [34] and then extended the study to the IBM on the stag-

gered mesh. The other advantage of this function φ4 is that it is quickly computed,

compared to the others, which means that we gain some computational time during

the boundary treatment of the IBM. Similar observations have been made recently

by B.E. Griffith [44]. The drawback is that it is sharper and thus introduces more

oscillations in the method, while it makes the NS system stiffer. Thus, the time step

needs to be reduced if no other technique is implemented to stabilize the scheme.

The other drawback is that it makes the immersed boundary more porous numeri-

cally than the other discrete Dirac delta functions. However, we show that is it easy

to control the volume thanks to constrained optimization and Fourier representations

of the interface.

At the same time, we implemented a fast, efficient solver for the pressure equation

of the IBM, using the multigrid/τ -extrapolation algorithm associated with an actual

double discretization technique.

Finally, we introduced the idea of a non-centered stencil for the divergence operator of

the pressure equation, in the neighborhood of the interface. This fast technique makes

use of the knowledge of the interface position and gives a second order convergence

property for the pressure accuracy. However, it requires the implementation of an

extrapolation technique, which can be complicated in 3D and for complex geometries.

Another issue is that this technique is hard to associate with the divergence-free

condition of incompressible fluids.
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Chapter 5

Stability

The instability of the IBM is caused by the stiffness of the NS system and the position

update of the membrane. In the momentum equation, we get two singular terms that

are ∇P and the source term F . This forms a collection of singularities to describe

the force that the membrane exerts on the fluid. The difference between these two

terms is essentially responsible for the discrete motion of the membrane. Since there

is no dissipative term in the elastic law implemented, the grid points describing the

membrane have a strong tendency to oscillate, which leads to even stiffer differences

between ∇P and F . This is the main source of instability. If one introduces some

relaxation by giving mass to the membrane, we get a more stable scheme. Since this

mass is neglected in most cases, we study the stability of the basic IBM and look for

more efficient solvers that can overcome this difficulty:

� Solution 1: to implicit the method.

� Solution 2: to use some filtering techniques on the moving boundary position

vector.
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5.1 Motivation: instability of the regular IBM

Let us look at the maximum possible time step for different problem sizes in the

”bubble” test case, with parameters chosen in such a way that it is not limited by

the CFL condition and using the two different discrete Dirac delta functions: cosine

φ2 and piecewise cubic φ4. In this particular case, we have σ = 10000, M = 6N ,

µ = 1, ρ = 1. Recall that σ is the elasticity coefficient of the immersed boundary,

M the number of discrete points along the immersed boundary, N the number of

discrete points in each direction of the Cartesian mesh, µ the viscosity coefficient of

the fluid, and ρ the density. The time steps are far below the ones imposed by the

CFL condition, whichever delta function is used.

N φ2 φ4

32 2.0 10−4 5 10−5

64 6 10−5 1 10−5

Table 5.1: Maximum time step for the explicit IBM, using φ2 or φ4.

There is a factor of 4, between the two time steps. If using φ4 improves the accuracy,

it does alter the stability. The main reason for this instability is the sharp shape of

φ4: the more we regularize the delta function using a wider support, the more stable

the method becomes because of the direct relation it has with the stiffness of the force

term. Another reason may be the oscillations introduced by the fact that φ4 does not

satisfy the condition (vi) of the compatibility conditions introduced by C. Peskin:

(vi)
∑
i∈Z

[φ(r − i)]2 = C2 ≤ 1, ∀r ∈ R,

which deals with the stability of the immersed boundary movement. Finally there is

a small but discontinuous over-jump next to the interface when using φ4, probably

due to the piecewise continuity of the function.
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But let us focus on the global instability issue of the IBM due to the stiffness of

the system, regardless of which delta function is used. A theoretical analysis of this

instability has been performed in the linear case by J.M. Stockie [105]. Figures 5.1,

5.2 and 5.3 show the behavior of the immersed boundary in the ”bubble” test case,

when the scheme blows up.
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Figure 5.1: Example of the behavior of the immersed ”bubble” when the scheme blows

up.

The first idea in order to improve the stability of the method is to use a fully implicit

time stepping. Let us introduce, at first, the explicit second-order scheme for the

IBM.

5.2 A Semi-implicit scheme for the IBM

There exist many second-order NS projection schemes. A recent description of these

methods is found in [21], for example. While the relatively new second-order schemes

are fully second-order accurate, we can observe that the older ones are second-order

accurate only for the velocity vector field. The pressure field is commonly first-order

accurate in the L∞-norm. Let us present the simplest second-order projection scheme,
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Figure 5.2: Curvilinear position vec-

tors of the moving boundary in the

”bubble” test-case: stable case
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Figure 5.3: Curvilinear position vec-

tors of the moving boundary in the

”bubble” test-case: unstable case

based on the midpoint and trapezoidal rules. In the midpoint rule, we discretize

∂V
∂t

(x, t) = g(x, t) by:

V n+1 − V n

∆t
= g(V n+ 1

2 , tn+ 1
2 ).

In the trapezoidal rule, the discretization is as follows:

V n+1 − V n

∆t
=

1

2

[
g(V n, tn) + g(V n+1, tn+1)

]
.

In the NS solver, at each time step, we need to evaluate at first V n+ 1
2 , P n+ 1

2 and

Xn+ 1
2 in a preliminary step:

F n =

∫
Γ

fn(s)δ(x−Xn(s))ds, (5.1)

ρ

[
V ∗ − V n

∆t/2
+ (V n.∇)V n

]
= µ∆V n −∇P n + F n, (5.2)

∆δP n =
2ρ

∆t
∇.V ∗, (5.3)
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ρ

[
V n+ 1

2 − V ∗

∆t/2

]
= −∇δP n, (5.4)

P n+ 1
2 = P n + δP n, (5.5)

Xn+ 1
2 −Xn

∆t/2
=

∫
Ω

V n+ 1
2 δ(x−Xn)dx. (5.6)

Then we can compute V n+1, P n+1 and Xn+1:

F n+ 1
2 =

∫
Γ

fn(s)δ(x−Xn+ 1
2 (s))ds, (5.7)

ρ

[
V ∗∗ − V n

∆t
+ (V n+ 1

2 .∇)V n+ 1
2

]
= µ∆V n+ 1

2 −∇P n+ 1
2 + F n+ 1

2 , (5.8)

∆δP n+ 1
2 =

ρ

∆t
∇.V ∗∗, (5.9)

ρ

[
V n+1 − V ∗∗

∆t

]
= −∇δP n+ 1

2 , (5.10)

P n+1 = P n+ 1
2 + δP n+ 1

2 , (5.11)

Xn+1 −Xn

∆t
=

∫
Ω

[
V n + V n+1

2

]
δ(x−Xn+ 1

2 )dx. (5.12)

This represents twice the computational cost of the explicit scheme, since we have

two systems to solve per time step, instead of one. It is possible to have an implicit

diffusion term in the prediction steps of the NS solver, Eqs.(5.2) and (5.8). The

convective term can be partially implicit too. We get then for Eq. (5.8):

ρ

[
V ∗∗ − V n

∆t
+ (V n+ 1

2 .∇)V ∗∗
]
= µ∆V ∗∗ −∇P n+ 1

2 + F n+ 1
2 . (5.13)
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However, it implies solving an extra system per time step. It is also possible to apply

the trapezoidal rule to the diffusion term:

1

2
∆ [V n + V ∗∗] or

1

2
∆
[
V n + V n+1

]
,

with appropriate boundary conditions on the pressure equation, and an explicit multi-

step scheme for the convective term, such as:

(
3

2
V n − 1

2
V n−1

)
.∇
(

V ∗∗ + V n

2

)
. (5.14)

Now, we extend this scheme to the implicit second-order IBM.

5.3 A Fully implicit scheme for the IBM

This scheme is similar to the semi-implicit scheme just described.

ρ

[
V ∗ − V n

∆t/2
+ (V n.∇)V n

]
= µ∆V ∗ −∇P n + F n, (5.15)

∆(δP )n =
2ρ

∆t
∇V ∗, (5.16)

P n+ 1
2 = P n + δP n; (5.17)

ρ

[
V n+ 1

2 − V ∗

∆t/2

]
= −∇(δP n), (5.18)

Second step (implicit):

ρ

[
V ∗∗ − V n

∆t
+ (V n+ 1

2 .∇)V n+ 1
2

]
= µ∆V n+ 1

2 −∇P n+ 1
2 +

1

2

(
F n + F n+1

)
, (5.19)

∆
(
δP n+ 1

2

)
=

ρ

∆t
∇V ∗∗, (5.20)
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P n+1 = P n+ 1
2 + δP n+ 1

2 , (5.21)

ρ

[
V n+1 − V ∗∗

∆t

]
= −∇(δP n+ 1

2 ), (5.22)

Xn+1 −Xn

∆t
=

1

2

(∫
Ω

V nδ(x−Xn)dS +

∫
Ω

V n+1δ(x−Xn+1)dS

)
. (5.23)

It is possible to apply the trapezoidal rule to the diffusive term. The Inexact New-

ton Backtracking method [85] is used at each time step to solve this last equation

Eq.(5.23), where V n+1 is depending on Xn+1 and F n+1 too. Each objective function

evaluation in the Newton algorithm requires a NS computation with one linear system

to solve (for the pressure correction), in order to get V n+1(X). So at each time step,

we have to solve : g(X) = 0, with g : RPM �→ RPM in the P -dimensional case (M is

the number of discretization points along the immersed boundary).

g(X) = X −Xn − ∆t

2

(∫
Ω

V nδ(x−Xn)dS +

∫
Ω

V n+1δ(x−Xn+1)dS

)
. (5.24)

5.3.1 The Search space

The search space at each time step for our problem is RPM for a P -dimensional case:

X =




X1

:

XP


 ,

where Xi, 1 ≤ i ≤ P is the vector of coordinate of the immersed boundary in the

ith direction. We actually solve this nonlinear problem : F (x) = 0 with
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F (x) = F






X1

:

XP




 =




g1([X1, .., XP ])

:

gP ([X1, .., XP ])


 ,

assuming that F is continuously differentiable everywhere in RPM .

5.3.2 Newton’s method

At each Newton step k, we have to solve the linear equation:

J(xk)sk = −F (xk). (5.25)

The first problem is that we do not have J , the Jacobian matrix of F : we can only

approximate the matrix-vector product J(xk)sk, which is computationaly expensive

and not very accurate. In our case, we use a forward finite difference approximation.

The second difficulty is that we have a large scale problem. The method we imple-

mented is the Inexact Newton Backtracking (INB) method [85], which offers strong

global convergence properties combined with potentially fast local convergence: at

each time step, we compute an approximate solution of (5.25) with an iterative solver

(Krylov method), under the inexact Newton condition:

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖ (5.26)

At each time step, a correction on the length of sk is eventually done using an iterative

linear backtracking method.

5.3.3 The Inexact Newton backtracking method: basic Al-

gorithm

Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given:
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for k = 0 step 1 until convergence do

choose ηk ∈ [0, ηmax] and determine sk such that

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖
set sk = sk and ηk = ηk

while ‖F (xk + sk)‖ > (1− t(1− ηk)) ‖F (xk)‖ do

choose θ ∈ [θmin, θmax]

update sk ← θsk and ηk ← 1− θ(1− ηk)

set xk+1 = xk + sk

end

5.3.4 The Inexact Newton condition step

We solve J(xk)sk = −F (xk) using an iterative method with a tolerance equal to

ηk‖F (xk)‖2 (if k = 1 the initial guess for sk is the zero vector, if k ≥ 1 it is sk−1).

For example, we use the restarted GMRES method of Saad and Schultz [99]. If

using FORTRAN, it is be possible to achieve parallelism with this part of the code:

the parallel SNES (Scalable Nonlinear Equation Solver) package, using MPI, offers

a Newton solver with backtracking and various Krylov methods. It is not possible

to use a preconditioner for these Krylov methods or other solvers: when we solve

the system Ax = b, we do not have the square matrix A but only the matrix-vector

product Ax.

5.3.5 The Jacobian matrix

During the inexact Newton step we need to evaluate the Jacobian of F . Actually the

Krylov methods only require the evaluation of the product J(xk)sk. We use a finite

difference scheme of order one to approximate it :

J(xk)sk � F (xk + δsk)− F (xk)

δ
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δ has to be as small as possible, in order to give a good approximation of the derivative,

since F is nonlinear. But we have to consider the floating point and truncation errors:

if δ is too small, then ‖F (xk + δsk)− F (xk)‖ = 0.

A value for δ can be, for example:

δ = 100εcomputer
‖xk‖∞
‖sk‖∞

5.3.6 Stopping criteria for the INB method

We say that convergence is reached when:

‖F (xk)‖2 ≤ εnewt‖F (x0)‖
or

‖sk‖ ≤ εnewt

with εnewt = 10−6 for example.

We also set some criteria for the failure of convergence:

� More than 20 INB method iterations without reaching convergence.

� sk not found after 200 iterations of the iterative method.

� More than 15 iterations of the backtracking loop without reaching the critera:

‖F (xk + sk)‖ > (1− t(1− ηk)) ‖F (xk)‖.

5.3.7 The Forcing term

The parameter ηk is very important in the INB method: it is forcing F (xk)+F ′(xk)sk

to be small in a particular way, in order to control the speed of convergence and the

accuracy of the results. The values of the ηks have been optimized by S. C. Eisenstat

and H. F. Walker in [28]. We chose to use these values:
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η0 = 0.5

ηk+1 =
∣∣∣‖F (xk+1)‖2−‖F (xk)+J(xk)sk‖2

‖F (xk)‖2

∣∣∣ , for k=1,2,...

with these safeguards at the end of each INB step to prevent the ηk to become too

small too fast, far away from the solution:

ηk+1 =




max{ηk+1, η
(1+

√
5)

2

k }, if η
(1+

√
5)

2

k > 0.1

min{ηk+1, ηmax}, with ηmax = 0.9 for example.

5.3.8 Choice of θ

At each backtracking step θ is chosen in order to minimize the quadratic p(θ) over

[θmin, θmax], where p is such that:




p(0) = g(0)

p′(0) = g′(0)

p(1) = g(1)

with g(θ) = ‖F (xk + θsk)‖22.
The problem of this implicit scheme is the very large computational cost, due to the

large number of NS evaluations per time step: around twenty in the ”bubble” test

case. However, we can observe an interesting stability result in Figure 5.5. Before

giving the results of this scheme in terms of stability, let us introduce a variation of it

based on a cosine expansion to represent the immersed boundary, in order to reduce

the size of the search space.

5.3.9 On The use of a compact representation of the interface

In all the schemes above, we discretize the moving boundary with a vector X of M

components. That means that the size of the search space in the Newton algorithm,
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for the implicit scheme, is 2 × M in 2D. We can decrease the size of this search

space using a Fourier expansion. If we call Nmod the numbers of modes in this

expansion, the search space is then 2Nmod + 1. This has two good consequences :

it reduces the computational cost and at the same time, it filters the position of the

boundary, getting rid of the short frequencies that can be sources of perturbations.

The problem could be, then, that the scheme would converge to another solution,

but the solutions we find with or without the Fourier expansions are extremely close.

The error, on a short time period, introduced by a moderate filtering technique is

neglectable compared to the one introduced by the discretization. On a long time

period, the error issue becomes a volume conservation issue.
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Figure 5.4: Distance between the discretization points of the immersed boundary in

an unstable case.

We can observe in Figure 5.6 that the use of Fourier expansions really decreases the

number of objective function evaluations in the inexact Newton backtracking method,

but it is still expansive compared to the explicit midpoint-trapezoidal method, even

if it has the advantage of being significantly more stable.
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Figure 5.5: Relative error of the diameter w.r.t. time step, ”bubble” test case, Nx =

Ny = 32, σ = 10000, µ = 1, Tfinal = 0.02. IMT: implicit midpoint-trapezoidal

scheme with or without the Fourier expansion. EMT: explicit midpoint-trapezoidal

scheme. Ex: explicit scheme.

5.4 The Fourier filtering technique

We saw that it was possible to use a Fourier expansion to represent the position of the

elastic immersed boundary. We measured experimentally that the error introduced

by this expansion can be neglected compared to the discretization errors (time and

space). Theoretically, we need to have a smooth, equally-spaced periodic vector

function in order to use Fourier expansions, which we do not have in the IBM case, due

to the elasticity of the moving boundary. However, since there is a no-slip boundary

condition between the immersed boundary and the velocity of the fluid, and that

the velocity field is a smooth regular field, the deformation applied to the immersed

boundary is smooth and regular. The deformation of the elastic material is smooth

and regular too, since we use Hooke’s law, which is linear. This is why we use
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trapezoidal scheme with the Fourier expansion. EMT: explicit midpoint-trapezoidal

scheme. IMT: implicit midpoint-trapezoidal scheme.

the expansion and then some filtering techniques [43, 29] in order to control the

frequencies and improve the stability of the method.

The results in the ”bubble” test-case, using the traditional scheme and the cosine

delta function φ2, show that the filtering techniques allow us to use larger time steps

by a factor three in a stiff case (σ = 100000, µ = 1, M = 3N , Tfinal = 5. 10−3), even

if we try to minimize the error introduced by the filter, taking κ ≤ 6 (see Table 5.2).

The drawback of the filter is that it alters the conservation of volume property of the

IBM (Figures 5.7 and 5.8). This could be eliminated by the global volume conserva-

tion technique based on Fourier expansions and constrained minimization introduced

in chapter 4.
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N without filter with filter κ

32 3 10−5 6 10−5 5

64 2.2 10−5 6.9 10−5 6

Table 5.2: Maximum time step for the filtered explicit IBM, using φ2.
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Fourier filter.
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To conclude this chapter, we implemented a fully implicit scheme for the IBM, based

on a quasi-Newton solver and the compact Fourier representation of the immersed

boundary. This gives some good results regarding the stability but still requires a

lot of NS evaluations per time step. It only saves computations in very stiff cases, in

which the elasticity coefficient of the membrane is very large. This method could be

associated with a domain decomposition method: an explicit solver would be used in

the sub-domains that do not contain a sharp interface, while this implicit solver would

be used in the other sub-domains, in order to deal with the stiff local NS system. At

the same time, we observed a significant improvement of the stability when using a
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filtering technique on the Fourier coefficients. The drawback is regarding the volume

conservation property of the method associated with the filter. This can be fixed

easily by implementing the fast and global volume conservation technique based on

the same Fourier coefficients used for filtering, introduced in the previous chapter.
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Chapter 6

Fluid flows with parallel MATLAB

We focus on domain decomposition techniques applied to fluid flows, in order to in-

crease problem sizes. We present our results in the context of accelerated Schwarz

methods and parallel MATLAB. Our goal is to be able to compute large scale sim-

ulations of fluid-structure interactions on a computer network, taking advantage of

the interactivity, the visualization ability of MATLAB and its simplicity for coding.

6.1 MATLABMPI

MATLAB is a high-level technical computing language and interactive environment

for algorithm development, data visualization and numerical computation that is

widely used by bio-engineers. MATLAB’s advantages are that it is user-friendly and

offers a large array of pre-defined functions (written in C). The drawback is that

it is an interpreted language, not suited for iterative tasks: it must interpret every

line of a loop and therefore cannot perform individual operations as fast as other

languages (C,Fortran). MPI, the library specification for message-passing, is the

standard for a broadly based committee of implementers. MATLABMPI [56] is a

set of MATLAB scripts that implements a subset of MPI and allows any MATLAB

program to be run on a parallel computer. It is designated for users who want to do
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simple parallelism and codes that do not require a very small latency for the message-

passing. MATLABMPI is very convenient for parallelization of an existing MATLAB

code without going through the process of switching to another language, and to use

a set of memory units. It allows us to benefit from MATLAB’s advantages while

running large scale problems. The requirements are a shared memory machine, and

a MATLAB license, although it is possible to use it on distributed memory systems

(then one MATLAB license per fat node is required). It works on both Windows or

Linux systems and it can be used on a single processor too, to test a parallelization

technique.

On a cluster, the message-passing in MATLABMPI is done via the file system. When

a process sends some data to another, it writes the data to a file on a shared file system,

then the other process reads that file. This means communication performance can

not be faster than the file server, which updates the directory in each node. The

communication within a shared memory multi-processor is faster, however, since the

processors share a local directory. Still, there is a latency due to the writing time and

the detection time. The actual code for the MPI Send and MPI Recv use file I/O:

the load and save functions of MATLAB. The sender creates two files in the common

directory, one data file and one lock file. The receiver has to detect the lock file and

then load the data file. This technique is efficient for large messages since there is no

buffering. In order to be more efficient, it is better to group the messages in larger

packages, sent all at once, if possible.

The communication time has been measured (Figure 6.1). In the program used, a

processor sends a vector of size N to an other processor, which sends it back to the

first sender. The clock time is measured using the MATLAB function etime, on two

different systems:
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Marvin: 1 node 8 way AMD Opteron 2.0GHz 64 bit 32 GB RAM

Medusa: 3 nodes 4 way AMD Opteron 1.6GHz 64 bit 16 GB RAM
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Figure 6.1: Clock time for message passing in MATLABMPI between two processors.

N is the size of the vector.

We observe on Medusa a latency of 2.5 10−2 s inside a node and 6 10−2 s between

cluster nodes. It is around 1 10−2 s on Marvin.

6.2 The Sequential computational cost of the IBM

We started from our MATLAB sequential implementation of the two-dimensional

NS equations, with finite differences and a uniform staggered mesh. While we are

using different semi-implicit or fully implicit codes, we parallelized the basic first-

order projection scheme [11]. In this scheme, only the pressure correction step is

computationally expensive, since a linear system has to be solved.

In the IBM, the arithmetic complexity of the boundary treatment process is propor-

tional to the number of discrete points along the immersed boundary. We evaluated

the CPU time spent on the pressure equation compared to the boundary treatment
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in a sequential MATLAB 2D IBM test-case, the so called 2D ”bubble” test-case. In

this case, we used the cputime command to measure the elapsed time (Figure 6.2).

The pressure solver uses a LUP decomposition: LU decomposition along with one

permutation matrix. N is the size of a side of the discrete 2D square mesh.
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Figure 6.2: Maltlab CPU time. NS: NS solver, Press: LUP pressure solver, IB:

immersed boundary computations.

Consequently, we will concentrate, now, on the parallelization of the pressure equa-

tion, that takes most of the CPU time.

6.3 The Parallel algorithm with homogeneous Neu-

mann boundary conditions

The problem to solve is the following homogeneous Neumann problem, for a two-

dimensional flow in a closed box:

∆P = RHS in Ω = [0, 1]2,
∂P

∂η
|∂Ω = 0. (6.1)

We notice at first that the solution is defined up to a constant shift and that the

right-hand side needs to satisfy a compatibility condition. We use the analytic addi-
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tive Aitken-Schwarz algorithm [71], which is an excellent candidate to allow efficient,

distributed computing with slow networks. The scalability of this algorithm will allow

us to take advantage of a parallel machine. The rectangular uniform mesh is decom-

posed into a unidirectional partition of overlapping strip domains. The method is a

post-process of the standard Schwarz method with an Aitken-like acceleration of the

sequences of interfaces produced with the block-wise Schwarz relaxation. For simplic-

ity, we restrict ourselves in this brief description of the algorithm to a decomposition

of Ω into two overlapping subdomains: Ω = Ω1 ∪ Ω2 where Ω1 = [0, xr] × [0, 1] and

Ω2 = [xl, 1]× [0, 1], xl < xr. The additive Schwarz algorithm is:

∆pn+1
1 = RHS in Ω1, ∆pn+1

2 = RHS in Ω2, (6.2)

pn+1
1|Γ1

= pn2|Γ1
, pn+1

2|Γ2
= pn1|Γ2

.

If we use a cosine expansion to describe the solution on the interface,

p(y)|Γi
=
∑
k

p̂k|Γi
cos(kπy) ∀k, i = 1 or 2, (6.3)

we observe that the cosine functions expansions of the solution on the interfaces Γ1,Γ2

provide a diagonalization of the trace transfer operator:

(
pn1|Γ1

, pn2|Γ2

) T→
(
pn+1

1|Γ1
, pn+1

2|Γ2

)
. (6.4)

As a matter of fact, ∆P = RHS decomposes onto a set of independent ODE problems:

∂2p̂k(x)

∂x2
− µkp̂k(x) = R̂HSk, ∀k. (6.5)

Let us denote Tk the trace operator for each wave component of the interface:

(
p̂n,k1|Γ1

− P̂ k
Γ1

, p̂n,k2|Γ2
− P̂ k

Γ2

)
Tk→
(
p̂n+1,k

1|Γ1
− P̂ k

Γ1
, p̂n+1,k

2|Γ2
− P̂ k

Γ2

)
, ∀k. (6.6)
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The operators Tk are linear and the sequences
{
p̂n1|Γ1

}
and

{
p̂n2|Γ2

}
have linear con-

vergence. If we call δ̂1
k and δ̂2

k the damping factors associated to the operators Tk and

in the respective subdomains Ω1 and Ω2, we have:

p̂n+1,k
1|Γ2

− P̂ k
Γ2

= δ̂1
k

(
p̂n,k2|Γ1

− P̂ k
Γ1

)
, p̂n+1,k

2|Γ1
− P̂Γ1 = δ̂2

k

(
p̂n,k1|Γ2

− P̂ k
Γ2

)
. (6.7)

These damping factors are computed analytically from the eigenvalues of the oper-

ators. We apply, then, the generalized Aitken acceleration separately to each wave

coefficient in order to get the exact limit of the sequence on the interfaces, based on

the first Schwarz iterate. The solution at the interface can then be recomposed in the

physical space from its discrete trigonometric expansion. After we get these limits we

use the LU block solver to compute the exact solution over Ω. In order to get rid of

the problem of the non-uniqueness of the solution, we treat the zero mode aside and

solve, at first, the equation with appropriate boundary conditions:

∂2p̂0(x)

∂x2
= R̂HS0. (6.8)

Figure 6.3: Domain decomposion.

To summarize, the algorithm writes:

� step 1: solve the mode zero one dimensional system and subtract this mode

from the right-hand side.

� step 2: compute analytically each damping factor for each wave number.

135



� step 3: perform one additive Schwarz iterate in parallel (a LU solver is used as

a block solver).

� step 4: apply the generalized Aitken acceleration on the interfaces.

– 4.1: compute the cosine expansion of the traces of p on the artificial inter-

faces for the initial condition and the first Schwarz iterate.

– 4.2: apply the generalized Aitken acceleration separately to each wave

coefficient, in order to get the limit expressed in the cosine functions vector

basis.

– 4.3: transfer back the interface limit values into the physical space.

� step 5: compute the solution for each subdomain in parallel.

6.3.1 Parallel Speedup

Only two steps, 3 and 5 of the algorithm, are done in parallel, which are the most

expensive ones, computationally, since they consist of solving the system over the

subdomains. As we can see in Figure 6.4, the global performance of the method is

encouraging. The time, measured with the MATLAB function etime, corresponds

to the largest one among the processors clock times. The results are better with a

larger problem size since the ratio between communication and computation is then

reduced.

Remark: it is necessary to synchronize the processors with MATLABMPI in order to

measure accurate computational times.

Steps 1,2 and 4 are not parallelized. Steps 1 and 4 contain a gathering of the interface

data by one process and then a distribution of the updated interface data to the

respective processes. The computational loads of these three steps are light, however,

since they correspond to interface and not subdomain treatments.
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Figure 6.4: Parallel speed up for the pressure solver with a LUP block solver, on

Marvin.

6.3.2 The LU block solver

Let us look at the computational time of the LUP solver in Figure 6.5. We can see

on this figure that the time is of third order with respect to the size of a matrix and

that it is divided linearly with respect to the number of subdomains: if we divide

the domain into n subdomains, the LU solver will be n times faster. This is why we

do not compare the speedup with the sequential code. The Aitken-Schwarz method

requires solving the problem twice per subdomain: this would correspond ideally to

the same computational time as the sequential code, but if we add the communication

time in the Aitken-Schwarz parallel solver plus the zero mode treatment due to the

non-uniqueness of the solution, the solver on two subdomains is significantly slower

than the sequential code (by a factor 1.5 to 2).

Another aspect of the parallelization is that we gain computational time in the de-

composition of the operator process (Figure 6.6): the time is divided by the square of

the number of subdomains, since the complexity of the decomposition is proportional

to the bandwidth of the subdomains. If we divide the domain in n subdomains, the

LUP solver will be n2 times faster. The computational time is of fourth order with
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Figure 6.5: LUP solver on Medusa.

respect to the size of the matrix.
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Figure 6.6: LUP decomposition on Medusa.

It is possible to use a faster LU solver offered by the MATLAB library: a LUPQ solver

using the UMFPACK [22]. We can see the LUPQ decomposition time in Figure 6.7

and solving time in Figure 6.8.

However, in this chapter, we used the LUP solver in the speedup measures, in order to

have a sufficient computational load per subdomain to overcome the communication

latency. In order to have an interesting speedup, this computational time has to be
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Figure 6.7: LUPQ decomp. on Medusa.
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Figure 6.8: LUPQ solver on Medusa.

larger than a second, which is never the case with LUPQ solver and subdomain sizes

smaller than 600× 600. A Krylov solver might be more appropriate.

Remark: we implemented a save and load function for the matrix decomposition

associated with each sub-domain, so that a LU decomposition for a specified problem

size and number of processors, is done once and for all.

Now we study the numerical accuracy of this pressure solver in the IBM.

6.4 The IBM case

We use the parallel pressure solver code with a right-hand side, similar to the ones we

find in the IBM, and more specifically in the 2D ”bubble” test-case. The singular part

of the right-hand side in the pressure equation comes from the divergence of the force

term, which is a collection of weighted shifted discrete Dirac delta functions along

a closed curve. We can observe in Figure 6.9 that even if we use regularized Dirac

delta functions, we get a very stiff right-hand side, which corresponds to an irregular

solution that you see in Figure 6.10. However, the observed error in the solution is

extremely small, and located at the interface, when the immersed boundary crosses

the subdomain interfaces. This is why this Aitken-Schwarz algortithm can be applied
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to the pressure equation in the IBM.
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Figure 6.9: Typical right-hand side of a pressure equation in the 2D ”bubble” test-case.

Elasticity coefficient of the immersed boundary σ = 10000.
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Figure 6.10: Discrete solution of the pressure equation at a time step in the 2D

”bubble” test-case. Elasticity coefficient of the immersed boundary σ = 10000.

Now, we would like to apply the immersed boundary techniques to a blood flow

simulation. Our aim is to do a multi-scale simulation of blood flow in an artery.

The large scale would be a fluid/elastic-body simulation of the discontinuous periodic

blood flow in the elastic artery. With the motion of the artery walls being limited,

we choose the penalty method to simulate it. The small scale would be a model of

the cells flowing and accumulating near the artery walls. Since the deformation of

the cells are large, we want to simulate it using the IBM.

This is a long term project and so far, we started with a versatile NS code that can

handle a broad variety of time dependent geometry, obtained from medical imaging.

The large amount of computations can benefit from parallel computing. We saw

that MATLABMPI has a large latency, but that the Aitken-Schwarz algorithm is

efficient enough to overcome it. This is why we implemented a 2D Poiseuille flow

with MATLABMPI, which brings great possibility of visualization.
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Figure 6.11: Example of a NS computation done with MATLABMPI on 8 processors.

2D Poiseuille flow in a channel [0, 4]× [0, 1]. Problem size: 2400× 600. Contour of

u. Rectangular obstacle simulated with direct forcing.
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Chapter 7

A Versatile Incompressible

Navier-Stokes Solver for Blood

Flow Application

M. Garbey†, F. Pacull

† Department of Computer Science, University of Houston, Houston, TX 77204, USA

We present, in this chapter, an integrated approach to quickly compute an incom-

pressible NS flow in a section of a large blood vessel using medical imaging data. The

goal is essentially to provide a first order approximation of some main quantities of

interest in cardiovascular disease: the shear stress and the pressure on the wall. The

NS solver relies on the L2 penalty approach pioneered by Caltagirone and co-workers

and combines nicely with a level set method based on the Mumford-Shah energy

model. Simulations on Stenosis cases based on angiogram are run in parallel with

MATLABMPI on a shared memory machine. While MATLABMPI communications

are based on the load and save functions of MATLAB and have high latency indeed,

we show that our Aitken-Schwarz domain decomposition algorithm provides a good
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parallel efficiency and scalability of the NS code.

7.1 Introduction and Motivation

We present, in this chapter, an integrated approach to quickly compute an incom-

pressible NS flow in a section of a large blood vessel using medical imaging data. The

goal is essentially to provide a first order approximation of some main quantities of

interest in cardiovascular disease: the shear stress and the pressure on the wall. From

medical imaging one may expect to acquire the geometry of a large vessel, as well

as the main flow components at the inlet and outlet of the region of interest of the

artery. Eventually, one may obtain a video of the main motion in time of the artery

if such motion is large enough.

We are interested in having an automated tool that provides a coarse approximation

of the shear stress on an artery wall in the presence of a stenosis, for example.

We present a fast, versatile and robust NS solver that relies heavily on the L2 penalty

approach pioneered by Caltagirone and co-workers [26] and combines nicely with a

level set method based on the Mumford-Shah energy model [110].

In this problem, the complexity may come from the geometry as well as the motion of

the vessel. For example, the section of the coronary artery that lies on the surface of

the heart displays some strong motion transverse to the main direction of the blood

flow in the artery during the cardiac cycle.

Our flow solver is an immersed boundary like method [89]. The wall boundary con-

dition is immersed in the Cartesian mesh thanks to a penalty term added to the

momentum equation. This technique is simple and easy to implement. We will

investigate in this chapter the accuracy, robustness and numerical efficiency of the

method.
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While all the results presented here are in two space dimensions, the method gen-

eralizes easily to three space dimensions. In particular there is no issue on mesh

generation thanks to the penalty method [83, 26] that imposes automatically the no

slip boundary condition on the wall. Further, following the suggestion of [101] one

can easily take into consideration the wall motion. The drawback of the method is

that one gets a lower order approximation of the solution [83]. However, due to the

uncertainty of the medical imaging data as well as a number of biological unknowns

such as the tissue constitutive laws, especially in the presence of a cardiovascular

disease, we expect that the limit on the accuracy of our NS solver will not be the

limiting factor in real clinical conditions. Further, we present a numerical technique

to recover the shear stress on the wall that complies with the presence of the singular

source term introduced in the momentum equation to enforce the no-slip boundary

condition. Finally, we take full advantage of the regular data structure of the problem

to use a domain decomposition (DD) algorithm that has high numerical efficiency and

scales well with the MATLABMPI implementation of Kepner et al. [56].

The plan of the chapter is as follows. In Section 2, we formulate the problem and

recall the penalty method. In Section 3, we discuss the discretization of the NS

equations and the construction of the penalty term. In Section 4, we present the

numerical solver and our computation of the shear stress on the wall. In Section 5,

we give some numerical results with benchmark problems that are related to stenosis.

Section 6 discusses the parallel implementation with MATLABMPI. Section 7 is our

conclusion and proposes future directions of work.

7.2 Formulation of the Problem and Methods

Since we will be concentrating our study on large vessels, we use an incompressible NS

fluid flow model [69, 122]. Improvement may be realized via some quasi-Newtonian
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flow model with little additional computing effort [84]. There is an abundant literature

on blood flow simulation in complex geometry pipe but confined by fixed walls. The

published studies generally rely on the finite element/volume/difference approaches

with irregular grid or finite volume/difference techniques with multi-block grid. How-

ever, high order method as spectral element for NS flow in complex geometry vessel is

also feasible and can be numerically efficient - see for example [79] and its references.

A main goal in such studies is to have a fast solver that provides a solution with desir-

able accuracy levels, which is achievable since so many factors related to moving walls

are neglected. As discussed by Shyy et al. [102, 107], various techniques have been

proposed in the literature to treat moving boundary problems. Categorically, we men-

tion Lagrangian (moving grid), Eulerian (fixed grid) and mixed Lagrangian-Eulerian

techniques. The Lagrangian approach has the advantage of being able to handle

the boundary condition at the interface precisely without ambiguity. The remeshing

strategy is employed to track the interface movement. However, if the shape variation

is substantial, issues arise in regard to grid skewness, geometric conservation laws,

and the need for generating new grid at every time instant. The Eulerian approach

is, in general, of lower accuracy because it needs to reconstruct the interface without

direct physical guidelines. The mixed Lagrangian-Eulerian approach is attractive as

the unified approach because it combines the flexibility of a fixed grid with the merit

of explicitly tracking the interface evolution.

For fast prototyping of incompressible NS flow we prefer to stay with the Eulerian

approach and combine fast solvers for regular Cartesian grid solution with some form

of fictitious domain decomposition or locally fitted stencil to implement the boundary

conditions [37, 73, 74, 75, 40, 102, 107]. In this chapter we will use the penalty method

introduced by Caltagirone and co-workers [26] that is simpler to implement than our

previous boundary fitted methods [73] and applies naturally to flow in a pipe with

moving walls [101].
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The flow of incompressible fluid in a rectangular domain Ω = (0, Lx) × (0, Ly) with

prescribed values of the velocity on ∂Ω obeys the NS equations:

∂tU + (U.∇)U +∇p− ν∇.(∇U) = f, in Ω

div(U) = 0, in Ω

U = g on ∂Ω,

We denote by U(x, y, t) the velocity with components (u1, u2) and by p(x, y, t) the

normalized pressure of the fluid. ν is a kinematic viscosity.

With an immersed boundary approach the domain Ω is decomposed into a fluid

subdomain Ωf and a wall subdomain Ωw. In the L2 penalty method the right hand

side f is a forcing term that contains a mask function ΛΩw

ΛΩw(x, y) = 1, if (x, y) ∈ Ωw, 0 elsewhere,

and is defined as follows

f = −1

η
ΛΩw {U − Uw(t)}.

Uw is the velocity of the moving wall and η is a small positive parameter that tends

to zero.

A formal asymptotic analysis helps us to understand how the penalty method matches

the no slip boundary condition on the interface Sf
w = Ω̄f

⋂
Ω̄w as η → 0. Let us define

the following expansion:

U = U0 + η U1, p = p0 + η p1.

Formally we obtained at leading order,

1

η
ΛΩw {U0 − Uw(t)} = 0,
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that is

U0 = Uw, for (x, y) ∈ Ωw.

The leading order terms U0 and p0 in the fluid domain Ωf satisfy the standard set of

NS equations:

∂tU0 + (U0.∇)U0 +∇p0 − ν∇.(∇U0) = 0, in Ωf

div(U0) = 0, in Ω.

At the next order we have in Ωw,

∇p0 + U1 + Qw = 0, (7.1)

where

Qw = ∂tUw + (Uw.∇)Uw − ν∇.(∇Uw).

Further the wall motion Uw must be divergence free.

At the next order we have in Ωf ,

∂tU1 + (U0.∇)U1 + (U1.∇)U0 +∇p1 − ν∇.(∇U1) = 0,

with

div(U1) = 0.

In the simplest situation where Uw ≡ 0, we observe that that the motion of the

flow is driven by the pressure following a classical Darcy law. η stands for a small

permeability. To summarize as η → 0, the flow evolution is dominated by the NS

equations in the artery, and by the Darcy law with very small permeability in the

wall. This actually corresponds to a standard multiscale model of blood flow in the

main arteries [1]. But we will use η as an artificial parameter rather than a measured
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permeability of the wall. As a matter of fact the discretization used in this chapter is

not appropriate to compute accurately all the space scales. From the analytical point

of view it was shown in [83] for fixed wall, i.e. Us ≡ 0, that the convergence order of

the penalty method is of order η
3
4 , in the fluid domain, and η

1
4 in the wall.

In this chapter we will restrict ourselves to the situation where the fluid domain

traverses the rectangular domain Ω = (0, Lx) × (0, Ly) in x direction, and stays at

a finite distance from the horizontal boundary of the domain y = 0, and y = Ly. Ω

decomposes into three narrow bands of length Lx that are respectively the lower wall

Ωlow
w , the fluid domain Ωf and the upper wall Ωupper

w .

Figure 7.1 and Figure 7.2 give examples of the fluid flow domain in the benchmark

problems of Section 5.

flow domain

downstream component

crosswind component

pressure

Figure 7.1: Steady flow with a 67% stenosis.

Figure 7.2: Image segmentation.
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We impose inlet and outlet boundary conditions on the flow speed along the vertical

wall x = 0 and x = Lx. The flow field at the inlet satisfies the Dirichlet boundary

condition

u1(0, y, t) = g(y, t), y ∈ (0, Ly).

g is set to zero inside the wall, i.e for y such that (0, y) ∈ Ωw.

For simplicity we impose a homogeneous Neumann boundary condition on the flow

field, i.e ∂u1

∂x
= ∂u2

∂x
= 0 at the outlet x = Lx and a constant profile of the pressure

along the outlet wall x = Lx.

In the absence of accurate medical data on inflow and outflow boundary conditions

for the section of interest of the vessel we expect to have a very simple laminar flow

structure close to a Poiseuille flow near both ends of the section.

To minimize the presence of vortices, we further modify the NS equation in the

neighborhood of the vertical wall x = 0, and x = Lx by multiplying the convective

term with a smooth function H(x) that is one inside the interval (d, Lx− d) and zero

in the interval (0, d
2
)
⋃
(Lx − d

2
, Lx). The momentum equation writes:

∂tU +H(GU.∇)U − ν∇.(∇U) = f, in Ω

The NS equations simplify then into the Stokes equation in the neighborhood of the

inlet and outlet of the fluid domain Ωf . To avoid reflection of acoustic waves at the

outlet one may then use transparent boundary conditions [9].

On the horizontal wall we assume either the periodicity of all variables, or we impose

the flow speed to be Uw.

Since the model has been completely defined, we are now going to present how the

set of equations is discretized.
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7.3 Discretization

The salient feature of our method is that the mesh generation is trivial no matter the

wall location. The eventual complexity of the geometry of the fluid domain is taken

care of by the forcing term in the penalty method which can be obtained directly

from an image segmentation procedure.

The discretisation of the NS equations is done with finite differences on a Cartesian

grid following the standard staggered grid method [91]. We define then the following

grid function:

u1

(
i hx,

(
j +

1

2

)
hy

)
, i = 0 . . . Nx, j = 0 . . . Ny − 1,

u2

((
i +

1

2

)
hx, j hy

)
, i = 0 . . . Nx − 1, j = 0 . . .Ny,

p

((
i +

1

2

)
hx,

(
j +

1

2

)
hy

)
, i = 0 . . . Nx − 1, j = 0 . . .Ny − 1

on the staggered mesh, of space step hx = Lx/Nx, hy = Ly/Ny.

The diffusion term in the momentum equation is discretized with second order central

finite differences. For the convective term, we are using a method of characteristic

that is first order in time and second order in space. To be more specific, let us

consider the transport equation

∂C

∂t
= u1(x, y, t)

∂C

∂x
+ u2(x, y, t)

∂C

∂y
, (7.2)

We use the first order approximation in time,

C(x, y, tn+1) = C(x− u1(x, y, tn) dt, y − u2(x, y, tn) dt, tn). (7.3)

at every grid point. Since the velocity components are defined at different grid points

of the staggered grid, we use a second order bilinear interpolation to project the

velocity components at the (x − u1(x, y, tn) dt, y − u2(x, y, tn) dt) location. This

bilinear interpolation satisfies a maximum principle and the time integration scheme
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is unconditionally stable. However, to keep the domain of dependency similar to the

stencil used for centered finite differences, we choose a space step dt that satisfies the

CFL condition.

Further improvement in the grid discretization implementation may use a high order

interpolation scheme for the convective term that introduces less dissipation and a

mesh refinement in the neighborhood of the interface Sf
w.

The mask function ΛΩw is obtained with an image segmentation technique that is

a level set method. Since the contours of the image are not necessarily sharp, it is

interesting to use the level set method presented in [110] and based on the Mumford-

Shah Model. For completeness we are going to describe briefly this method. We refer

to the review papers [103, 55] for a more comprehensive description of the level set

method in the framework of image analysis. Let us denote C(s) the unknown param-

eterized curve(s) that delineate the vessel. We assume that the unknown function(s)

C(s) : [0, 1] → IR2 is a piecewise C1[0, 1] function. In the level set method, C(s) is

represented by the zero level set of a Lipschitz function: φ : Ω→ IR.

C(s) should correspond to the minimum of the energy F (C, c1, c2):

F (C, c1, c2) = µ1.(length(C)) + µ2.(area(inside(C))) + (7.4)

λ1

∫
inside(C)

|uo − c1|2 dx + λ2

∫
outside(C)

|uo − c2|2 dx, (7.5)

where

c1(φ) =

∫
Ω

u0 H(φ) dx∫
Ω

H(φ) dx
,

c2(φ) =

∫
Ω

u0 (1−H(φ)) dx∫
Ω
(1−H(φ)) dx

.

H is the Heaviside function H(z) = 1, if z ≥ 0, 0 if z < 0. To understand the

energy function used in this model, let us suppose that µ1 and µ2 are set to zero, and

let us suppose that the image is a piecewise constant function with values 0 and 1.
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The angiogram of an artery with a 50 percent stenosis given in Figure 7.2 is at first

sight close to this description. Clearly the functions C(s) that realize the minimum of

energy are the boundaries that delimit the two sets u0 = 0 and u0 = 1. The first two

terms in the energy model are common in many active contour methods and control

the smoothness of the curve C(s) as well as the detection of the edges.

The numerical process to compute φ uses the following evolution problem

∂I

∂t
= N [I], (7.6)

where N is the associated Euler Lagrange equation

N [φ] =
d

d z
H(z)[µ div

( ∇φ

|∇φ|
)
− ν − λ1(I − c1)

2 + λ2(I − c2)
2], x ∈ Ω.

In the numerical implementation one uses a regularization of the Heaviside function

Hε ∈ C1(0, 1) such that Hε → H, as ε → 0, as well as a reinitialization procedure

every few time steps that sharpens the level set function in the neighborhood of the

zero level set.

To successfully apply the Chan-Vese method one must choose carefully the parameters

of the method, i.e. λ1, λ2, µ1, µ2. From our experience, successful conditions on the

parameters to detect the edge of a thin long object, are λ1 >> 1 and λ2 = 1. This

follows somehow the fact that the area inside C(s) is much smaller than the area

outside C(s). We will discuss further the robustness of this segmentation technique

in Section 5.

The mask function ΛΩw in the momentum equation is, consequently,

Λ(x, y) = H(Φ(x, y)), (x, y) ∈ Ω.

There is a natural advantage to combining the level set method with the penalty

technique for NS, because the level set function provides directly the source term in

the momentum equation. We do not need an explicit geometric representation of the
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wall boundary, as a differentiable deformable model will do [23]. Further, any artifact

possibly produced by the level set method such as an artificial closed subset of fluid

in the wall, see Figure 7.2, should have little impact on the computation of the flow

in the artery. As a matter of fact, such cavity has U ≈ Us on all boundaries.

We have now described the complete discretization of the set of NS equations. For

time stepping we have used in this chapter a projection scheme [11]. The time inte-

gration writes then

� step 1: prediction of the velocity ûk+1 by solving either

ûk+1 − uk,∗

∆t
− ν∆uk (7.7)

= fk+1 −∇pk in Ω = (0, Lx)× (0, Ly),

or

ûk+1 − uk,∗

∆t
− ν∆uk+1 (7.8)

= fk+11−∇pk in Ω = (0, Lx)× (0, Ly),

with boundary condition

ûk+1 = g on ∂Ω;

and

fk = −1

η
ΛΩs {uk − Us(t

k)}.

uk,∗ is obtained with the method of characteristics (7.2, 7.3).

� step 2: projection of the predicted velocity to the space of divergence free

functions

−div∇δp = − 1

∆t
div ûk+1, (7.9)

uk+1 = ûk+1 −∆t∇δp, pk+1 = pk + δp. (7.10)
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We choose to use the semi-implicit scheme (7.8) instead of (7.7) if the mesh is fine

enough to make the stability condition on the explicit treatment of the diffusion term

too restrictive compared to the CFL condition. We have chosen a priori to stay with a

first order scheme in time because of the uncertainty on the (pulsating) inflow velocity

condition. The emphasis in this work is more on the robustness of the algorithm than

on the accuracy.

We are now going to describe the solvers used to solve the set of discrete equations.

7.4 Solver

The NS calculation decomposes into three steps that are the prediction of the flow

speed components, the solution of a Poisson problem for the pressure, and eventually

the computation of the shear stress along the wall. We will review successively the

numerical algorithm used at each step.

7.4.1 Solver for the Momentum Equation

The explicit time stepping of (7.7) does not require any solver. The semi-implicit

scheme of (7.8) requires the solution of a linear system of equations corresponding to

the discretization of the operator:

L = −dt ν ∆ + c Id

where u is given from the previous time step, c is a coefficient that depends on the

penalty term and Id is the identity operator. In practice dt ≈ min(hx, hy), η ≺≺ 1

and ν � min(hx, hy). The discrete operator Lh is then close to the identity. The

successive over relaxation scheme is numerically very efficient on such operators. For

parallel computing, we may also adopt the modified Schwarz method of [37, 73] that

has been specially designed for small viscosity flow with a main dominant direction
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of convection as we have here. Further we know a priori that the velocity inside the

wall is asymptotically close to Uw. Consequently, the velocity does not need to be

updated at grid points inside the wall Ωw that are few meshes away from the wall.

We will discuss now the solution process for the Poisson problem that requires a

priori a larger number of floating points operations (flops) than for the momentum

equation.

7.4.2 Solver for the Pressure Equation

The pressure equation can be integrated with a number of existing fast Poisson solvers

since the discretization grid is regular. It is convenient, for example, to use a (full)

multigrid solver here. The arithmetic complexity of this solver is optimum. Further,

the iterative solver converges extremely fast for those grid points that are in the solid

wall.

A parallel version of our solver uses the Aitken-Schwarz Domain Decomposition (DD)

technique presented in [72, 74] that is in this situation a direct solver. The imple-

mentation will be detailed in Section 6.

We recall that, for a moderate number of subdomains, the overall arithmetic com-

plexity of the Aitken-Schwarz algorithm is of the order of the arithmetic complexity

of the fast Poisson solver applied to the subdomain factor the number of subdomains.

In practice, the subdomains can be narrow bands, and it is not clear what should be

the fastest subdomain solver on a given computer architecture. We choose the sub-

domain solver for the Poisson problems that provides the smallest elapse time. We

refer to [74] for an extensive study of the performance, comparing several libraries

invoking either an LU decomposition, a Krylov method, or a multigrid scheme. We

will see later that our NS solver can perform very quickly the numerical simulation.

However, the main difficulty consists of retrieving accurately a quantity of interest in

blood flow calculations that is the shear stress on the wall boundary. We are going
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to address this problem in the next section.

7.4.3 Computation of the shear stress

While the computation of the hydrodynamic forces exerted by the fluid on the wall is

easy to compute using the integral on Ωw of the penalty term [101], the computation

of the shear stress is more problematic in the penalty method.

The shear stress in the boundary layer can be obtained from the formula

τ = ν

(
∂w1

∂ξ
+

∂w2

∂η

)
,

where (ξ, η) is the normal/tangential coordinate system along the wall, and (w1, w2)

are the components of the flow field along respectively the tangential and normal

direction to the wall. Because the flow field (u1, u2) is computed on the Cartesian

staggered grid we rewrite the shear stress formula in the (x, y) coordinate system.

If α denotes the angle of the tangent to the wall at point M(x, y) ∈ Sf
w, with the

horizontal axis x, we get

τ = ν

(
cos(2α)

(
∂u1

∂y
+

∂u2

∂x

)
+ sin(2α)

(
∂u2

∂y
− ∂u1

∂x

))
.

The flow field is continuous but not differentiable on Sf
w . We cannot therefore

approximate the shear stress with some central finite differences formula that will

require points on both sides of the wall. Further, the computed velocity exhibits

small oscillations in the vicinity of Sf
w inside Ωf because of the stiffness of the forcing

term in the momentum equation at that location. We have tested two different

methods to tackle this problem.

Method A follows a two step procedure. First the velocity variables are filtered using

a high order filter. This regularization reduces the Gibbs phenomenon by improving

the approximation away from the zone of discontinuities [42]. We recall that a real

and even function σ(η) is called a filter of order p if [42],
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� σ(0) = 1, σ(l)(0) = 0, 1 ≤ l ≤ p− 1,

� σ(η) = 0, for |η| ≥ 1,

� σ(η) ∈ Cp−1, for η ∈ (−∞,∞).

Let us denote x̃ = 2π
Lx

x, ỹ = 2π
Ly

y. For commodity we set nx = Nx

2
, ny = Ny

2
. We

compute the discrete Fourier expansion

u(x, y, t) =
nx∑

k1=−nx

ny∑
k2=−ny

ûk1,k2(t) ei(k1x̃+k2ỹ).

The filtered function uσ is

uσ(x, y, t) =
nx∑

k1=−nx

ny∑
k2=−ny

σ

( |k1|κ
nx

)
σ

( |k2|κ
ny

)
ûk1,k2(t) ei(k1x̃+k2ỹ). (7.11)

The parameter κ ≥ 0 sets the level of cut in frequency space. As shown in [42], this

filtering procedure efficiently reduces the impact of the Gibbs phenomenon on the

accuracy of the approximation of a non smooth periodic function.

All pointwise derivatives
∂u1/2

∂x
and

∂u1/2

∂y
are computed with centered finite differences

inside the domain of the fluid on those stencils that do not intersect the wall sub-

domain. We end up with the computation of an approximation of the first order

derivatives of the flow speed at grid points of coordinate (xi, yj) that are one or two

cells away from the wall boundary.

Second, we proceed with a linear extrapolation formula to approximate the Deriva-

tives of Interest (DI) functions
∂u1/2

∂x
and

∂u1/2

∂y
at the wall location using exclusively

the previous values of the derivatives inside Ωf . For simplicity, we use an extrapola-

tion formula along the vertical, horizontal or diagonal direction that is the closest to

the local normal direction to the wall. For example, with α ∈ (0, π
8
) we use a linear

extrapolation with the closest two grid values of the DI functions aligned along the

vertical axis y. For α ∈ (3π
8
, π

2
), we use the grid values aligned along the horizontal

direction. For α ∈ (π
8
, 3π

8
) we use the grid values at points (xi, yj) of the Cartesian

grid aligned along the direction y = −hy

hx
x.
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Method B uses a gridless approach. Let R be the rectangle (−d, d)×(0, l) in the (ξ, η)

coordinate system that is tangent to the wall at M(x, y) ∈ Sf
w and lies inside the flow

region. Let Rh be the set of grid points inside this rectangle completed by the grid

points obtained from the intersection of the Cartesian mesh with the wall in the ball

of center M(x, y) and radius d. For each flow velocity components, one computes a

second order polynomial approximation PM(x, y) = a0 + a1x + a2 y + a3 x2 +

a4 y2 + a5 x y that fits in the least square sense the flow field component on Rh. We

notice that the least square approximation filters out the possible oscillation of the

solution near the wall.

The derivatives of the velocity field are then approximated by the derivative of P (x, y).

The dimensions of the rectangle are as follows: the width of the rectangle R is chosen

to include approximatively three grid points, i.e., d =
√

h2
x + h2

y. The length l of the

rectangle is chosen to be proportional to the boundary layer thickness, i.e., l ≈ √ν,

for small ν, in order to capture accurately the parabolic profile of the flow field in the

layer. l is, a priori, independent of the mesh size.

We have now described the method to compute the NS set of equations in a pipe of

arbitrary shape that traverses the square subdomain Ω, and get an approximation of

the shear stress along the wall boundaries.

In the next section we will report on the numerical accuracy obtained with this

method.

7.5 Numerical Results

Let us first study the impact of the grid on the accuracy of the computation of the

shear stress for a simple Poiseuille flow in a straight pipe.
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7.5.1 Poiseuille Flow

We look first at the sensitivity of the result with various positions of a straight pipe

of width 0.6 Ly included in the rectangle (0, Lx) × (0, Ly) = (0, 3.5)× (0, 1). In this

section, we use a square mesh, i.e., hx = hy for all numerical experiments. The main

issue is to experiment how robust the computation of the shear stress at the wall

remains when the wall boundary location is arbitrarily set. There is no reason for

which the wall of the pipe should coincide with the grid points of the Cartesian mesh.

First, we keep the pipe parallel to the horizontal axis. In Figure 7.3, we test method A

with various positions of the pipe and three levels of grid refinement. We observe,

globally, the convergence of the method, and obtain the correct shear stress within

five per cent of relative error with Ny = 160. Method A is, however, fairly sensitive to

the choice of the cut off parameter κ of the filter (7.11).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.05

0.1

0.15

0.2

0.25

h
y
=1/40

h
y
=1/80

h
y
=1/160

Figure 7.3: Sensitivity of the computation of the shear stress on the wall as a function

of the horizontal position with Method A.

In a second set of experiments, we rotate the pipe that now forms an angle of measure

α with the horizontal axis. In this experiment, α is kept in the range (0, π
4
).

We achieve the same level of accuracy as before with method A, with a slightly finer

mesh. In all simulations we have used a moderate level of cut off in the filtering with
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κ ≈ 0.8. With no filtering, the computation of the shear stress seems to give random

results (see Figure 7.4). The flow solution exhibits small oscillations next to the wall,

because of the singular source term in the momentum equation.
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Figure 7.4: Sensitivity of the computation of the shear stress on the wall as a function

of the angle α with Method A but no filtering case.

These numerical experiments with Poiseuille flow might be used to calibrate the filter

(7.11) that can be used later for simulations with pipes that have complex geometry.

We have compared method B with method A, for the same two sets of experiments.

Method B can provide a more robust and accurate result in all situations (see Fig-

ure 7.5) provided that the dimension of the rectangle R used in the gridless approx-

imation is set properly. The dimension l, in the direction orthogonal to the wall, is

chosen to be mesh independent. From our numerical experiments, to choose l propor-

tional to the boundary layer thickness ≈ √ν seems optimal. Let us notice, however,

that the number of grid points of R in the gridless approximation may become large

when the space step is of the same order as ν.

We now report on computation with a more complex flow domain.
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Figure 7.5: Sensitivity of the computation of the shear stress on the wall as a function

of the angle α with Method B.

7.5.2 Benchmark Problems

We have first verified our code with a steady problem in a straight pipe of width

0.6 Ly obstructed by an obstacle that is the upper half of a disk. The radius of the

disk is 0.3 Ly, and the obstacle mimics a fifty percent stenose. The center of the

disc is at coordinates (Lx

2
, 0). We took Lx = 3.5, Ly = 1, and the viscosity is set to

ν = 0.01. The velocity profile at the left entry of the pipe corresponds to a Poiseuille

flow with a velocity of maximum value one.

The steady solution is approximated by time marching until t = 10. Several finite

element solutions with up to 5 104 elements have been computed with the software

package ADINA (http://www.adina.com/) for comparison purposes. We verified that

our code converges to the same solution with a convergence order that is about one in

the L∞ norm for the velocity components, and a slightly better order of convergence

order in the L2 norm. We get similar results for the pressure field in the L2 norm,

but notice that the pressure may exhibit some sharp singular peaks at some of the

grid points that are next to the wall of the disk. Because we know a priori that the

pressure should stay continuous at the wall interface, it is straightforward to filter
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out numerically these singular grid point values.

Figure 7.1 reports on a stiffer steady problem where ν = 0.003 and the stenosis

reaches 67%. We see clearly the recirculation zone right after the obstacle. For smaller

viscosity, we observe in our numerical experiments a secondary recirculation zone near

the upper side of the wall downstream, and the solution becomes eventually unsteady.

We have tested unsteady flows corresponding to a velocity profile at the inlet that is

a Womersley solution for a two dimensional pulsating flow between plates [58]. This

solution might be obtained with the method of separation of variable u1(0, y, t) =

uo(y) g(t) applied to the Stokes problem. In our simulation, g(t) is provided by

a measurement of the blood flow main velocity component with a healthy human

subject (see Figure 7.6).

The geometry of the pipe is given in Figure 7.6 - postion A, and can be deformed

eventually by a periodic smooth motion in time. To be more specific, the velocity

field applied to the wall is parallel to the y axis, and given by the following formula:

Uw(x, t) = (0, u2w), with (7.12)

u2w(x, t) = Uo

(
exp

(
−(x− Lx

2
)2

µ

)
− (a x + b)

)
cos(2πt).

The parameters a and b are chosen such that the wall at both ends of the pipe stays

steady, i.e., u2w(0, y, t) = u2w(Lx, y, t) = 0. Lx is large and µ is small enough to have

a and b close to zero. One can check that Uw is divergence free.

The sharpness of the wall curvature in its motion is set by µ and the amplitude of

the motion is approximatively Uo

π
. Figure 7.6 shows the two extreme positions of the

pipe in this oscillatory motion of the wall. Figure 7.7, (respectively Figure 7.8) shows

the shear stress computed on the lower wall for the wall position as in Figure 7.6

(respectively, the wall oscillations between position A and B at speed (7.12)). We

observe a periodic solution in time that has a strong pique in space at the location of

the stenose. The periodic motion of the wall adds a 12 percent increase on the shear

stress versus the solution with static wall as in position A.
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Figure 7.6: Pulsating flow problem.

As seen in the contour plot of Figure 7.9, the shear stress computation becomes

noisier with the wall motion. In a real life situation, the coronary section that is lying

on the heart has motions with fast acceleration periods followed by slow relaxation

synchronized with the cardiac cycle. We can check with our numerical experiment

that the shear stress at the wall is strongly affected by this motion.

Next, we have computed a steady flow in a pipe that is obtained from the image

segmentation of the two dimensional angiogram picture of a carotid. We recall that

an angiogram uses x-rays to visualize blood vessels. To create the x-ray images, the

physician injects a dye through a catheter that has roughly a one millimeter diameter.

This dye, called contrast, makes the lumen of the vessel visible on an x-ray.

Figure 7.2 shows the result of the segmentation with the method of Chan and Vese

[110]. One artifact in this image segmentation corresponds to an annotation of the

angiogram with an arrow. A second artifact at the lower right corner of Figure 7.2

comes from the poor quality of the angiogram itself. We impose a Poiseuille-like

boundary condition on the inflow at the inlet of the vessel and zero velocity bound-

ary condition elsewhere along the vertical line x = 0. Our flow server based on the

L2 penalty method does not suffer from the two artifacts as shown in Figure 7.10.
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Figure 7.7: Shear stress on the lower wall.

The result of the image segmentation is also relatively sensitive to the choice of the

parameters λ1, λ2, µ1, µ2 in (7.4,7.5). The sensitivity of the flow simulation to the

parameter of the image segmentation can be analyzed experimentally or possibly with

the automatic differentiation of our NS code that has a very simple implementation.

The dynamic of the propagation of the dye from the catheter appears clearly during

the beginning of the angiogram examination. It is easy to simulate this phenomenon

that is essentially governed by the transport of mass with the method of characteristic

already used in the resolution of the momentum equation. We have done numerous

simulations of this type for our benchmark problems.

The main difficulty remains the validation of the image segmentation that also de-

pends strongly on the quality of the contrast in the x-ray picture.

To validate the medical image analysis, we propose to couple our NS solver with

an optimization procedure that matches the flow solution with the measurement of

the blood flow speed at a few locations in the vessel using ultrasound techniques for

example. This validation method, that will be the subject of future investigation in
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Figure 7.8: Shear stress on the moving lower wall.

our work, requires the use of three dimensional computations coupled to the image

segmentation of three dimensional angiogram. However, the efficiency of the opti-

mization procedure depends very much on our ability to have a very fast solver of

the NS flow with complex geometry. To address this issue, we next present a parallel

implementation of our NS code.

7.6 Parallel Performance

Our goal is to efficiently compute large-size problems taking advantage of the inter-

activity of MATLAB and its simplicity for coding.

MATLAB is a high-level technical computing language and interactive environment

for algorithm development, data visualization and numerical computation that is

widely used by computational scientists and engineers. It is user-friendly and offers

a wide array of pre-defined functions. The drawback is that it is an interpreted

language, not suited for iterative tasks: it must interpret every line of a loop and
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Figure 7.9: Contour plot of the Shear stress on the moving lower wall.

Figure 7.10: Flow amplitude for a stationary problem.

therefore cannot perform individual operations as fast as other languages such as C

or Fortran. In our experience, the MATLAB compiler does not seem to provide much

faster codes. We choose here to use the MPI extension of MATLAB described in [56].

This software library provides a wonderful framework to produce quickly a parallel

code that takes advantage of all the memory available on a shared memory system.

MPI is the de facto standard for communication in parallel scientific applications [33].

MATLABMPI [56] is a set of MATLAB scripts that implements a subset of MPI

and allows any MATLAB program to be run on a parallel computer. The MPI

extension of MATLAB is public domain and does not require anything other than

a standard MATLAB license. This software is designated for users who want to do

simple parallelism for codes that do not require a very small latency for the message-

passing. This approach gives access to larger scale simulation with a minimum of

time spent in the code development.

167



The message-passing in MATLABMPI is done via the file system: when a processor

sends a message to another processor, it writes the data in a file in a common com-

munication directory. A processor that receives a message should read a file from this

common directory. Communication on a cluster cannot be faster than the file server,

which updates the directory in each node. The communication within a Shared-

memory Multi Processor (SMP) system is faster though, since the processors share a

local directory. Still, there is a latency due to the detection and writing/reading time.

The actual codes for the MPI Send and MPI Recv use file I/O: the load and save

functions of MATLAB. The sender creates two files in the common communication

directory, one lock file and one buffer file. The receiver must detect the lock file and

then load the data from the buffer file. This technique is efficient for very large mes-

sages since there is no buffering. It is recommended then to group small size messages

into a larger package and send it all at once, whenever the algorithm allows to do so.

Another way to decrease the latency with the MATLABMPI implementation of [56]

is to create a virtual communication folder on the RAM. Access to the main memory

should be faster than on the hard drive.

For reference, our computer plate-form is an 8-way Opteron running at 2.0 GHz with

32 GB of main memory. Figure 7.11 reports on the performance of the message passing

with MATLABMPI on this system. N is the size of the one dimensional array that is

communicated. The clock time is measured using the MATLAB function etime for a

small MATLAB program that sends the one dimensional array to a given processor

and receives it back from the second processor. This elapsed time is divided by two

and given in Figure 7.11 as a function of N.

We observe a latency that is about 2.10−3 s using a communication directory in the

hard drive and 1.10−3 s using the RAM. There is not as much improvement as one

may expect because the load and save procedures have inherently large overhead.

Further, we found that the latency can be significantly larger for message-passing
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Figure 7.11: Clock time for one message-passing in MATLABMPI using either a

communication directory on the hard drive or in main memory.

between cluster nodes linked by a Gigabit ethernet switch.

We are now going to describe in more detail the parallel implementation of our NS

solver. For simplicity, we restrict ourselves to explicit time stepping in the momen-

tum equation. It should be noticed that the pressure correction step is always the

most computationally expensive step of the projection scheme. Consequently, we will

concentrate now on the parallelization of the pressure equation solver (7.9).

We use the analytic additive Aitken-Schwarz algorithm [72] that is designed to com-

bine efficient distributed computing with high latency networks and numerical effi-

ciency. To clarify the parallel implementation, let us recall the algorithm that has

been presented in more detail in [72].

The rectangular uniform mesh is decomposed into a unidirectional partition of over-

lapping strip domains. The method is a post-process of the standard additive Schwarz

algorithm. An Aitken-like acceleration is applied to the sequences of interfaces pro-

duced with the block-wise Schwarz relaxation. Because the eigenvectors of the (linear)

trace transfer operator are known, this acceleration provides the exact interface con-

dition in one single step, no matter the overlap between subdomains. For simplicity,

we restrict ourselves in this brief description of the algorithm to a decomposition of
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Ω into two overlapping subdomains: Ω = Ω1 ∪ Ω2 where Ω1 = [0, xr] × [0, 1] and

Ω2 = [xl, 1] × [0, 1], xl < xr. We suppose also that the problem to be solved has

homogeneous Dirichlet boundary conditions along the vertical sides [xl] × [0, 1] and

[xr]× [0, 1] and homogeneous Neumann boundary conditions on the horizontal sides

of the rectangular domain. The additive Schwarz algorithm consists of repeating the

following iteration:

∆pn+1
1 = RHS in Ω1, ∆pn+1

2 = RHS in Ω2, (7.13)

pn+1
1|Γ1

= pn2|Γ1
, pn+1

2|Γ2
= pn1|Γ2

,

until convergence. In practice this algorithm is applied to compute the pressure cor-

rection δp rather than the pressure itself. A natural initial condition for the iterative

solver is then p0
1|Γ1

= p0
2|Γ2

= 0.

We observe that a cosine expansion of the trace of the solution on the interface:

p(y)|Γi
=

∑
k=1..Ny−1

p̂k|Γi
cos(kπy) , i = 1 or 2, (7.14)

provides a diagonalization of the trace transfer operator:

(
pn1|Γ1

, pn2|Γ2

) T→
(
pn+1

1|Γ1
, pn+1

2|Γ2

)
. (7.15)

The Poisson problem satisfied by the pressure decomposes onto a set of independent

two point boundary value problems:

∂2p̂k(x)

∂x2
− µk p̂k(x) = R̂HSk, ∀k. (7.16)

Let us denote Tk the trace operator for each wave component of the interface:

(
p̂n,k1|Γ1

− p̂kΓ1
, p̂n,k2|Γ2

− p̂kΓ2

)
Tk→
(
p̂n+1,k

1|Γ1
− p̂kΓ1

, p̂n+1,k
2|Γ2

− p̂kΓ2

)
, ∀k. (7.17)
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The operators Tk are linear and the sequences
{
p̂n1|Γ1

}
and

{
p̂n2|Γ2

}
have linear con-

vergence. This is expressed by the set of linear equations

p̂n+1,k
1|Γ2

− p̂kΓ2
= δ̂1

k

(
p̂n,k2|Γ1

− p̂kΓ1

)
, p̂n+1,k

2|Γ1
− p̂kΓ1

= δ̂2
k

(
p̂n,k1|Γ2

− p̂kΓ2

)
, (7.18)

where δ̂1
k and δ̂2

k are the so called damping factors associated with each subdomain

Ω1 and Ω2.

These damping factors are computed analytically from the eigenvalues of the opera-

tors. We apply a generalized Aitken acceleration separately to each wave coefficient

in order to get the exact limit of the sequence on the interfaces based on the first

Schwarz iterate. It consists of simply solving the 2 × 2 linear system (7.18) where

n = 0, of unknown (p̂kΓ1
, p̂kΓ1

). The same procedure applies with an arbitrary number

of subdomains but then the matrix of the linear system corresponding to (7.18) has

a pentadiagonal structure. Finally the exact solution at the artificial interfaces Γi is

reconstructed in physical space from its discrete trigonometric expansion.

For the nonhomogeneous mixed boundary conditions of our pressure problem (7.9),

we must add a preprocessing step that consists of solving the zero mode equation:

∂2p̂0(x)

∂x2
= R̂HS0, (7.19)

with ∂p̂0

∂x
= 0 at x = 0 and p̂0(Lx) = 0.

To summarize, the algorithm writes:

� prelim. step: compute analytically each damping factor for each wave number.

� step 1: solve the mode zero one dimensional equation.

� step 2: perform one additive Schwarz iterate in parallel.

� step 3: apply the generalized Aitken acceleration on the interfaces.
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– 3.1: compute the cosine expansion of the traces of p on the artificial inter-

faces for the initial condition and the first Schwarz iterate.

– 3.2: apply the generalized Aitken acceleration separately to each wave

coefficients in order to get the limit expressed in the cosine functions vector

basis.

– 3.3: transfer back the interface limit values into the physical space.

� step 4: compute the solution for each subdomain in parallel using the boundary

values obtained from step 3.

In our MATLABMPI implementation Steps 1 and 3.2 are not parallelized and com-

puted redundantly by all the processors. An all-to-all Broadcast through cyclic re-

duction is used to gather the zero mode component of the right-hand side and to

build the artificial interface matrix.

Besides the pressure equation (7.9), the prediction and correction steps of the pro-

jection scheme are also parallelized: this implies one extra communication process

with the neighboring subdomains at the beginning of those two steps, in order to

build the right-hand side of the equation. We used a fast LUPQ solver offered by

MATLAB that is based on the UMFPACK library [22] to solve each subdomain. The

operator matrix M is decomposed into a unit lower triangular matrix L, a upper

triangular matrix U , a permutation matrix P and a column reordering matrix Q so

that PMQ = LU , using the fact that it is a very sparse matrix. This factorization,

based on a tree and special ordering, optimizes the memory access patterns. We no-

tice that the decomposition is computed once and for all in the initialization phase

of the NS code. The pressure solver reuses this decomposition at every time step.

The UMFPACK decomposition provides particularly good performance in MATLAB

compared to the original Linpack LU solver that is typically two to three times slower

for the size of the problem considered here.
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Overall the Aitken-Schwarz parallel solver is a direct solver and takes the exact same

elapse time at each time step.

Figure 7.12 and Figure 7.13 report respectively on the speedup and scalability of our

parallel implementation of the complete NS code. In the scalability test, we have

successively run a problem of size 141 × 567 with two processors, 200 × 801 on 4

processors, and 283× 1129 on 8 processors. The number of unknowns grows linearly

with the number of processors, but the aspect ratio hx/hy of the grid stays the same.

The scalability performance obtained in Figure 7.13 is particularly good because the

arithmetic complexity of a NS solver in general grows faster than linearly, with respect

to the number of unknowns.
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Figure 7.12: Parallel speed-up for the parallel NS code.

Let us notice that one should synchronize the processors in order to measure accurate

computational times, since the MATLAB application starting time can vary. Perfor-

mance speedup is based on the reference time provided by the code running with two

subdomains on two processors. This speedup is therefore significantly better than

what one obtains by comparing our parallel code with its sequential version. The

speedup of the parallel code with two processors compared to the sequential code

running on one processor is only 1.56. The overhead in the sequential code comes
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Figure 7.13: Parallel scalability for the NS code.

partially from the nature of the algorithm itself, which requires two subdomain solves,

and partly from the fact that the parallel code has many more lines of code to be

interpreted. Another aspect of the parallelization is that we gain computational time

in the decomposition of the operator process: this time is divided by the square of the

number of subdomains since the complexity of the decomposition is proportional to

the bandwidth of the subdomains. While the speedup obtained in Figure 7.12 is not

optimum, the MATLABMPI implementation still seems very attractive and allows

for solving large problem size.

To give an overall idea of the MATLABMPI code performance, 100 time steps for a

100 × 400 problem size takes less than 10 seconds on 8 processors. This is roughly

the elapsed time needed to simulate one complete cardiac cycle with ν ≈ 10−2.

A parallel implementation in Fortran or C can be further improved by taking ad-

vantage of the more efficient communication schemes offered by MPI for these pro-

gramming languages. One can also adapt the communication scheme in such a way

that high frequency components of the interfaces are exchanged between neighbor

subdomains only. We refer to the optimized implementation presented in [81] for grid

computing that was done for three space dimension elliptic problems. We will now

summarize the conclusion of our investigation.
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7.7 Conclusion

We have presented in this chapter an integrated approach to compute quickly an

incompressible NS flow in a section of a large blood vessel using medical imaging

data. The key feature of the method is to use the L2 penalty method pioneered by

Caltagirone and co-workers (83). The first two major advantages of the method are

the easiness of the implementation and a discretization that allows the use of fast

elliptic solvers optimized for cache memory access. Second, our numerous numeri-

cal experiments have shown that the numerical method is fairly robust. Third, the

penalty method combines naturally with a level set method that directly provide the

penalty term in the momentum equation. Further, while the numerical method is

first order we can surprisingly recover a reasonable estimate of the shear stress on the

wall using a gridless approach. Finally, we have presented a straightforward paral-

lelization of the NS code based on the Aitken-Schwarz algorithm and MATLABMPI.

The MATLAB language allows a fast prototyping of the code while MATLABMPI

offers the possibility to easily access a large amount of memory. The drawback of

the approach followed in this chapter is obviously the fact that we cannot solve accu-

rately the boundary layers that may appear in the flow field. This type of simulation

should then be limited to moderated values of the Reynolds number. We are currently

developing a multiscale heterogeneous domain decomposition version of our code to

address this problem [75]. Our next step is, however, to generalize the present work

to simulation in three space dimensions by extending the capability of our parallel 3D

NS solver presented in [37, 73] to blood flow simulation related to real clinical cases.
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Chapter 8

Conclusion and research directions

In this chapter, we list the results obtained during this work and explore the future

research directions.

Regarding the IBM, we introduced [34] and studied the piecewise cubic Dirac delta

function, already used to solve elliptic equations with singular source terms [111]. We

showed that even if this delta function does not satisfy the compatibility condition

defined by C.S. Peskin [89], it can be used in the IBM, but should be associated with

the staggered mesh. It improves the accuracy of the method and is quickly evaluated,

but decreases the stability of the IBM, as well as its volume conservation property,

due to the stiffness of the delta function, compared to the commonly used ones.

We studied a fast multigrid solver to solve elliptic equations with singular source

terms: the multigrid/τ -extrapolation technique, introduced by U. Rude [98]. This

solver has a fast convergence and improves the discrete solution accuracy, while being

easy to implement. Unlike in the traditional algorithm, we used the fact that we

can discretize the singularity on different grids, instead of interpolating the fine grid

discretization on the coarse. However, this method is based on the knowledge of the

convergence order of the discrete solution, which is space-dependent in the case of
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elliptic equations with singular source terms: it decreases in the neighborhood of the

singularity. The use of the sharp piecewise cubic Dirac delta function narrows this

neighborhood, but we do not get uniform improvement of the accuracy using this

solver. We did implement this method with a space-dependent coefficient for the

extrapolation, but the space-dependent asymptotic order of the discrete solution still

has to be evaluated, for elliptic equations with singular source terms.

We introduced and justified the use of Fourier expansions to describe the moving

interface. This has several applications regarding the IBM. The first is the filtering

of the discrete moving boundary point oscillations: the high frequencies can be easily

eliminated. The second is the global volume conservation of the domain topology,

using constrained optimization on the compact representation of the interface.

A non-centered stencil for the divergence operator has been developed in order to

solve the IBM pressure equation, using the position of the moving boundary. Since

there is commutativity of the discrete Laplace and divergence operators, we can apply

the modified divergence operator after we solve the Poisson equation in each direction

of the space. This brings a uniform second-order convergence for the accuracy for

non-smooth solutions. We implemented this technique in the IBM case but still need

to find a way to obtain a divergence-free velocity vector field form the pressure field.

The extrapolation technique used to compute the non-centered divergence needs to

be studied too, in order to get a robust and simple technique.

We implemented a fully implicit scheme for the IBM, based on a quasi-Newton solver

and the compact Fourier representation of the immersed boundary. This gives good

results regarding the stability but still requires a lot of NS evaluations per time step.

It only saves computations in very stiff cases, in which the elasticity coefficient of the

membrane is very large. This method can be associated with a domain decomposition
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method: an explicit solver would be used in the sub-domains that do not contain a

sharp interface, while this implicit solver will be used in the other sub-domains, in

order to deal with the stiff local NS system.

We implemented a fluid solver using a parallel MATLAB toolbox, MATLABMPI, on a

shared-memory machine. The algorithm we used is the analytic Aitken acceleration of

the Schwarz algorithm, which is efficient and not severely penalized by the slow latency

of the toolbox. A parallel MATLAB toolbox is convenient for quickly parallelizing an

existing MATLAB code or to test a parallel algorithm, on a large memory array. We

actually used it along with the penalty method, to implement a technique to quickly

compute an incompressible NS flow in a section of a large blood vessel using imaging

data. This allows us to recover a reasonable estimate of the shear stress on the artery

wall. Now that we showed that the Aitken-Schwarz algorithm is robust, regarding

the stiff right-hand side of the IBM, we would like to implement a parallel IBM with

MATLABMPI or a similar parallel MATLAB toolbox.

Finally, we would like to study the contact between immersed boundaries or between

an elastic boundary and a solid obstacle, using artificial boundary methods for both

the fixed and moving objects. This could lead to a simulation of the large blood cells

transport in plasma.
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Chapter 9

Appendix

9.1 Derivation of the incompressible Navier-Stokes

equations

Let us derive the 2D incompressible NS equations, in primitive variables. V is the

velocity vector. Its x and y components are u and v: V = [u, v]T . P is the fluid

pressure field. At first, we consider a rectangular control volume with side lengths

∆x and ∆y.

Figure 9.1: 2D control volume of width ∆x and height ∆y with indexed sides.
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9.1.1 The Conservation of mass property

The first fluid property that we use, is the conservation of mass property: the rate

at which mass increases within the control volume is equal to the rate at which mass

enters the control volume through its four boundaries.

The mass within the control volume is ρ∆x∆y, where ρ is the density parameter of the

fluid, measure of mass per unit of volume. We consider the density to be a constant

with respect to space and time: the fluid is incompressible and homogeneous. Thus

the rate at which mass increases within the control volume is null:

∂ [ρ∆x∆y]

∂t
= ∆x∆y

∂ρ

∂t
= 0. (9.1)

The rate at which mass enters each boundary is:

� boundary 1: +ρu|1∆y,

� boundary 2: −ρv|2∆x,

� boundary 3: −ρu|3∆y,

� boundary 4: +ρv|4∆x.

So the rate at which mass enters the whole control volume is null:

ρ∆y
(
u|1 − u|3

)
+ ρ∆x

(
v|2 − v|4

)
= 0. (9.2)

Now if we divide this equality by −ρ∆x∆y, express the velocity as a continuous

function of x and y and take the limit when the volume tends to zero, we get:

lim
∆x,∆y−→0

u(x + ∆x, y)− u(x, y)

∆x
+

v(x, y + ∆y)− v(x, y)

∆y
= (9.3)

∂u

∂x
+

∂v

∂y
= 0.

Finally, the conservation of mass property leads to the divergence-free condition:
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∇.V = 0 (9.4)

9.1.2 The Conservation of momentum property

Now, we consider the conservation of momentum in the control volume. Let us start

with the u-momentum: the rate of change of u-momentum within the control volume

is equal to the rate at which the u-momentum enters the control volume associated

with the forces acting on it in the x direction.

The momentum in the x direction is ∆x∆yρu, so that the rate of change of u-

momentum is ∆x∆yρ∂u
∂t
. Now, the rate at which the u-momentum enters each bound-

ary is:

� boundary 1: ρu|1
(
+u|1∆y

)
,

� boundary 2: ρu|2
(−v|2∆x

)
,

� boundary 3: ρu|3
(−u|3∆y

)
,

� boundary 4: ρu|4
(
+v|4∆x

)
.

Then, we evaluate the different forces applied to the control volume. Let us start with

the pressure forces applied to the boundaries of the control volume in the x direction:

� on boundary 1: +P|1∆y,

� on boundary 3: −P|3∆y.

The viscous stress τ applies a force to the control volume too. τxx is the normal stress

in the x direction. τyy is the normal stress in the y direction. τxy is the shear stress in

the y direction, while τyx is the shear stress in the x direction. For Newtonian fluids,

there is a linear relationship between stress and strain rate that Stokes described for

multidimensional flows:
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� τxx = 2µ
3

[
2∂u
∂x
− ∂v

∂y

]
,

� τyy = 2µ
3

[
−∂u

∂x
+ 2∂v

∂y

]
,

� τxy = τyx = µ
[
∂u
∂y

+ ∂v
∂x

]
,

where µ is the viscosity coefficient of the fluid. Thus, the viscous force applied to

each boundary of the control volume is:

� boundary 1: −τxx∆y (normal viscous force),

� boundary 2: −τyx∆x (tangential viscous force),

� boundary 3: +τxx∆y (normal viscous force),

� boundary 4: +τyx∆x (tangential viscous force).

The body force term is ∆x∆yF , with F = [Fx, Fy]
T .

If we sum all the terms contributing to the u-momentum and divide by ∆x∆y, we

get:

ρ
∂u

∂t
+ ρ

u2
|3 − u2

|1
∆x

+ ρ
u|4v|4 − u|2u|2

∆y
+

P|3 − P|1
∆x

= (9.5)

τxx|3 − τxx|1
∆x

+
τyx|4 − τyx|2

∆y
+ Fx.

By taking the limit when ∆x,∆y −→ 0, we obtain:

ρ
∂u

∂t
+ ρ

∂(u2)

∂x
+ ρ

∂(uv)

∂y
+

∂P

∂x
=

∂τxx
∂x

+
∂τyx
∂y

+ Fx. (9.6)

In the left-hand side:

ρ
∂(u2)

∂x
+ ρ

∂(uv)

∂y
= ρ

[
u
∂u

∂x
+ v

∂u

∂y

]
, (9.7)
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using the mass conservation divergence-free property (9.4) of the fluid. For the right-

hand side, in a similar way:

∂τxx
∂x

+
∂τyx
∂y

= µ

[
∂2u

∂x2
+

∂2u

∂y2

]
. (9.8)

Finally, (9.6), (9.7), (9.8) lead to the u-momentum equation:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
+

∂P

∂x
= µ

[
∂2u

∂x2
+

∂2u

∂y2

]
+ Fx, (9.9)

and the same process gives us the v-momentum equation:

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
+

∂P

∂y
= µ

[
∂2v

∂x2
+

∂2v

∂y2

]
+ Fy. (9.10)

By putting (9.9), (9.10) and (9.4) together, we obtain the incompressible NS equa-

tions:

ρ

[
∂V

∂t
+ (V.∇)V

]
= µ∆V −∇P + F (9.11)

∇.V = 0 (9.12)
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